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Abstract

Over the years many techniques have been developed for simulating and modelling trees,
ferns, crystals and natural structures. Indeed, many complex and realistic images have been formed.
Often, these rely on rule based systems to create the structure, they start with a simple form and
progressively refine it into a more complex form by applying rules. We use the notion of Sticky
Pixels to form textures. The pixels (or objects) move aroundthe space, when they touch another
object they stick together to form a larger cluster. The objects aggregate and stop at the place and
position where they first touched. Such an aggregation generates neighbourhoods of pixels that form
natural looking shapes. The pixels may randomly walk around(such as using Brownian motion),
or be guided along pre-defined routes (often described as ballistic), to obtain different structures.
We use a ballistic aggregation technique, where the particles are randomly dropped onto a canvas,
migrate and stick onto the closest position of the nearest cluster. We present Sticky Pixels, explain
different parameters and describe our algorithm.
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1 Introduction and Motivation

Growth in nature seems a complex phenomena to
model. The branches and leaves grow to maximise
the surface area and minimise the distance from the
branches in order to balance the need of food pro-
duction with the distance the food will travel [Her-
rmann, 1986]. But, often, it is by applying sim-
ple rules, that complex and intricate shapes are
formed [Mandelbrot, 1982].

For many years different people have been mod-
elling the natural world. They have generated mod-
els and computer graphics images of trees [Jones and
Briggs, 1998] and plants [Měch and Prusinkiewicz,
1996], lightening [Reed and Wyvill, 1994; Evans
et al., 2000] and and other forms in the natural sci-
ences [Fleischmann et al., 1989]. Indeed, such nat-

ural objects are fractals [Mandelbrot, 1982] and are
studied, modelled and simulated by scientists from
physics, engineering and crystallography, for exam-
ple.

Many of the growth forms use grammar-based
(L-grammar) models, for example [Jones and
Briggs, 1998] and [Měch and Prusinkiewicz, 1996].
(See Foley et al. [1990] for a general introduction
on L-grammars). However, others use a notion of
aggregation to ‘grow’ the formations, such as [Reed
and Wyvill, 1994] and [Fleischmann et al., 1989]. In
this paper we focus on growth patterns by aggrega-
tion. Aggregation is the process of growing a cluster
by adding one particle at a time to a previous growth
or an initial seed.

Our motivation is to generate ‘textures’ and pro-
duce ‘emergence art’ rather than to specifically sim-
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ulate natural phenomenon. In this paper, we dis-
cuss the notion of ‘sticky pixels’ (section 2), briefly
explain other models including Eden’s model (sec-
tion 3.1), Diffuse Limited Aggregation method (sec-
tion 3.2), and Ballistic approach (section 3.4). We
then present our implementation that uses a Random
Drop Ballistic Aggregation method (section 4.2).

2 Aggregation by Sticky Pixels

The phrase “sticky pixels” [Sti, 2000] is used to
describe models of how particles move around, in
space, and join to form clusters. An object may
be defined as sticky or ‘stuck’ to another object
when it touches something that is already in the clus-
ter [Prusinkiewicz, 1993]. The object itself may take
the form of a pixel, but, it could be larger than a
pixel, adapt over the course of time, or even repre-
sent a geometric shape.

Consider an experiment where we have a petri-
dish (say) and a large number of particles. Over time
we drop the particles into the dish allowing them to
join together and form clusters. In this example, we
can see that the outcome of the cluster may depend
on some simple components:

1. the behaviour of the particles, how they move
around the dish, whether the particles are at-
tracted or repelled from each other (ie. how and
whether they do stick together), the behaviour
may also depend on factors such as the size,
shape and type of the particles;

2. the container size, shape, area;

3. whether there is any anything else in the con-
tainer, such as fixed point to attract to (a seed),
whether another liquid is already present;

4. what external phenomena affect the experi-
ment, such as heating up the dish or tilting the
dish on one side, or how the particles are added
to the dish.

3 Some Growth Models

There are many growth models and model variants,
we briefly present some models of growth.

3.1 Eden’s Model

One of the first computer models of growth was
published in 1960 by Eden, as cited by [Herrmann,
1986]. Known commonly as the “Eden model”, a
single particle is set at the centre of a grid, with sub-
sequent particles being added at random to bounding
points. Such a growth is depicted in Figure 1.

Figure 1: Growth aggregation using Eden’s
model. Left, using 4-connectivity adjacency

rule; Right, using 8-connectivity. Below,
colourmap for the visualization, showing bands

of white, grey and black.

3.1.1 Adjacency and Lattice Arrangements

Here, and in any growth model, the notion of ad-
jacency may be interpreted differently and may af-
fect and bias the formed structure. For example, is
an object connected if only the diagonals touch. If
the diagonals imply adjacency then the object is 8-
connected, otherwise it is 4-connected. Adjacency
also depends upon the lattice structure and how the
aggregate and particle movement is calculated and
stored.

The lattice itself may be square, hexagonal or
triangular [Meakin, 1986b]. Indeed, Morse et al.



[1990] in their parallel implementation, used a
hexagonal matrix.

There are three common lattice representations
(for storing and calculating the movement of parti-
cles):

Full-lattice, where the pixels are held and calcu-
lated on integer sized grids

Semi-lattice, where the calculation is done in
floating-point arithmetic and rounded into in-
tegers to be stored in an integer based lattice.

Off-lattice, stores and calculates the particle posi-
tions and the coordinates of the particles in
floating point numbers.

3.2 Diffusion Limited Aggregation

Diffuse Limited Aggregation (DLA), as presented
by Witten and Sander [1981], is concerned with the
generation of aggregates formed from the movement
of randomly moving particles, Figure 2.

Initial Seed Particle

Stuck particles

Random walking particle

Figure 2: Diffuse Limited Aggregation.
Particles enter the experiment away from the

centre, they randomly move around. They stop
and stick to the aggregate when they first

touch.

An initial particle, a seed, is set in the centre of
the lattice. The next particle is released at a ran-

dom point, far from the origin of a lattice, and is al-
lowed to move at random. When the moving particle
touches the seed or another already aggregated par-
ticle, the new particle becomes immobile and stops
where it touched. When the particle has joined the
cluster a new particle is released. This process is
repeated thousands of times.

As the movement of a particle is random, it may
move away from the cluster – rather than towards it;
the process may never terminate.

Thus,launchingandkilling circles are often em-
ployed, see Figure 3. Also, space leaping techniques
may be used to move the particle longer distances,
when it is far away from the cluster, to speed up the
processing movement [Meakin, 1986a].

radius
maxradius

launching radius
maxradius +N

killing radius
3maxradius

Figure 3: DLA with launching and killing
circles. If the particle moves through the outer

killing circle it is lost and a new particle is
started at a random point on the launching

circle.

It is intriguing that beautiful and natural-looking
structures are formed from such random motion,
such as illustrated later.



3.3 Probability and Epidemic Aggregation

A DLA aggregation, for example, is made from a
cluster of collided particles. It may usefully include
other parameters and probabilistic events, such that
not every particle sticks to the main cluster. Indeed,
in physics it is often useful to model the ‘stickiness’
of the particles to control whether a particle sticks
where it collides, or adjoins in the future, or whether
it sticks at all. Additionally, other particles may
stimulate growth more rapidly in a certain area by
attracting more particles to a certain point, or they
could destroy and infect part of the pre-built clus-
ter, or leave trails behind after ‘bouncing’ into the
aggregation [Herrmann, 1986].

3.4 Ballistic Aggregation

Traditionally, the particles move in a simulated
Brownian motion, itself fractal in nature [Mandel-
brot, 1982], but it is possible to allow the particles to
be added to the cluster using different methods. One
such method is called ballistic aggregation. Here,
the particles travel along straight lines, and are added
to the aggregate whenever they touch a particle in the
cluster.

This generates simpler structures, to those gener-
ated by the DLA’s. Indeed, the ballistic models are
tradditionaly not viewed as being fractal [Ramanlal
and Sander, 1985].

3.5 Cluster-Cluster Aggregation

So far we have only mentioned the situation where
a single particles diffuses at a time and the cluster
remains stationary. However, it is possible to start
with a suspension of particles and allow them all to
diffuse and form clusters as they collide. Then the
larger clusters diffuse, collide with other clusters or
particles to form yet larger aggregates. When mod-
elling such an interaction, often, the repulsive energy
of two colliding particles or aggregates is considered
along with their kinetics, mass and mass distribu-
tion [Lin et al., 1989].

4 Evolutionary Textures

We present our implementations and adaptations of
these techniques, including (1) Random Drop with
mask, and (2) Random Drop Ballistic Aggregation.

4.1 Random Drop with Mask

It is interesting, and not surprising, that the Eden
growth system can be modelled, although waste-
fully, by dropping random pixels into the grid. If the
dropped pixels fall adjacent to a seed then they stick,
otherwise another point is chosen. Such a model
may be improved by increasing the ‘drop zone’ like
the killing circles in the DLA method. We have
implemented such a growth model, that also uses
a mask. By changing the mask we can change the
sticky conditions. Thus, for the new proposed point
to stick, the mask, when AND’ed with the cluster,
must return a value greater than 2 (for example).
Thus the mask biases the growth to places where
there are two or more adjacent cluster points. This
has the tendency to inhibit long tendrils. Using a
local 4 and 8-connection mask (Figure 4A,B) we
get results as in Figure 1 (left, right respectively),
and using a wider mask (Figure 4C,D) a smoother
growth is formed Figure 5 (left, right respectively).
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Figure 4: Masks used to control aggregation
and inhibit tentril growth.

4.2 Random Drop Ballistic Aggregation

In our hybrid model, the particles are randomly
dropped onto the lattice and then stick to theclos-
estpoint in the current aggregation, see Figure 6. If
an object is dropped on top of a point that is already
in the cluster, then that particle is rejected.

This growth algorithm encourages tendril growth.
See, Figure 7.

We use an off-lattice calculation method, with the
particles being stored on a regular grid. We generate
the dropped particles over a circular dropping zone.
To do this, we generate two real random numbers,



Figure 5: Eden model, by random dropping
and probability masks to control growth from

dropping aggregation.

Dropped
Pixel
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Cluster
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point in
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Figure 6: Random Dropped Ballistic
Aggregation (RDBA). The dropped particle is

aggregated to the closest tendril.

one representing a circle radius and the other an an-
gle round the circle. A Euclidean distance is calcu-
lated from this dropped point to the cluster elements,
and the closest sticky position, to the dropped parti-
cle, is then chosen.

The ‘brute force’ and naive approach is to linearly
search for the closest. However, increasing concen-
tric circles may be used to search for the closest pixel
of the cluster, see Figure 6. We use the midpoint al-
gorithm to calculate the exact position of where to
stick the new particle [Foley et al., 1990].

Figure 8 shows 100000 pixels dropped, and Fig-
ure 9 shows a nearly full drop zone.

Figure 7: Beautiful natural-looking structures,
using ballistic aggregation.

4.3 Biased Drop

We have investigated different dropping strategies,
including:

1. N points being dropped at the same place.

2. points being dropped on the circumference of
a circle, Figure 10. The circumference acts as
an attractor for the growth to generate lightning
bolt formations that are similar in form to those
generated by Reed and Wyvill [1994].

3. N points being dropped a set distance from the
previous, Figure 11. We used a circular bias;
once one pixel had been dropped, the nextn
pixels were dropped in a small circular offset
from the previous, see Figure 11. This is simi-
lar to Davidovitch et al. [2000] who use chaotic
functions instead of random numbers.

The closest sticky position, in the aggregate,
is always found for each pixel that is dropped,
whether it is an initial dropped pixel, or is taken
from an offset.



Figure 8: Random Dropped Ballistic
Aggregation with 100000 aggregated pixels.

5 Summary/Conclusion

We have presented a brief overview of growth mod-
els using Sticky Pixels, described (1) a Random
Drop implementation of Eden’s model, and (2) a
Random Dropped Ballistic Aggregation model. We
have shown that different models may be generated
by using different dropping and sticking strategies.

Through generating these and similar images pre-
sented in this paper, we observe that (a) the larger
masks, used for the Eden’s model implementation,
have a tendency to inhibit long tendrils, and (b)
the closest pixel search strategy, used in our RDBA
model, encourages long thin tendrils to form. Thus,
it would be interesting to use such a mask tendril in-
hibitor in the RDBA model.

Even though, the RDBA model encourages long
thin tendrils to form, we believe the method gener-
ates some interesting textures and beautiful forms.
Moreover, some interesting growths may be gener-
ated by adapting the model and (say) using a circular
bias to some dropped pixels.

Finally, we believe ‘sticky pixels’ is more de-
scriptive and is perhaps a more accessible phrase

Figure 9: Random Dropped Ballistic
Aggregation with a nearly full drop zone.

than others (such as using ‘Diffuse Limited Aggre-
gation’). Indeed, sticky pixels incorporates methods
and models that, perhaps, are not strictly a simula-
tion of a physical model or attempt to model a real
life or world phenomena.
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