461 research outputs found

    Susceptibility gradient quantization by MRI signal response mapping (SIRMA) to dephaser

    Get PDF
    Purpose: Susceptibility effects are a very efficient source of contrast in magnetic resonance imaging. However, detection is hampered by the fact the induced contrast is negative. In this work, the SIgnal Response MApping (SIRMA) to dephaser method is proposed to map susceptibility gradient to improve visualization. Methods: In conventional gradient echo acquisitions, the echo formation of susceptibility affected spins is shifted in k -space, the shift being proportional to the susceptibility gradient. Susceptibility gradients map can be produced by measuring this induced shifts. The SIRMA method measures these shifts from a series of dephased images collected with additional incremental dephasers. These additional dephasers correspond either to a slice refocusing gradient offset or to a reconstruction window off-centering. The signal intensity profile as a function of the additional dephaser was determined on a pixel-by-pixel basis from the ensemble of dephased images. Susceptibility affected voxels presented a signal response profile maximum shifted compared to nonaffected voxels ones. Shift magnitude and sign were measured for each pixel to determine susceptibility gradients and produce a susceptibility gradient map. Results: In vitro experiments demonstrated the ability of the method to map gradient inhomogeneities induced by a cylinder. Quantization accuracy was evaluated comparing SIRMA images and simulations performed on the well-characterized air filled cylinder model. Performances of the SIRMA method, evaluated in vitro on cylinders filled with various superparamagnetic iron oxide SPIO concentrations, showed limited influence of acquisition parameters. Robustness of the method was then assessed in vivo after an infusion of SPIO-loaded nanocapsules into the rat brain using a convection-enhanced drug delivery approach. The region of massive susceptibility gradient induced by the SPIO-loaded nanocapsules was clearly delineated on SIRMA maps and images were compared to T 2 weighted images, Susceptibility Gradient Map (SGM), and histological Perl\u27s staining slice. The potential for quantitative evaluation of SPIO distribution volume was demonstrated. Conclusions: The proposed method is a promising technique for a wide range of applications especially in molecular or cellular imaging with respect to its quantitative nature and its computational simplicity

    Prenatal evaluation of kidney function in mice using dynamic contrast-enhanced magnetic resonance imaging

    Get PDF
    Glomerular differentiation starts as soon as embryonic stage 12 in mice and suggests that kidneys may be functional at this stage. Dynamic contrast-enhanced magnetic resonance microscopy, a noninvasive imaging technique, was used to assess renal function establishment in utero. Indeed, in adults (n = 3), an intravenous injection of gadolinium-DOTA induced in a first step a massive and rapid drop in kidney signal intensity followed, in a second step, by a drop in bladder signal intensity. The delay in signal changes between kidney and bladder reflected glomerular filtration. Pregnant mice underwent anatomical and dynamic contrast-enhanced magnetic resonance microscopy on postcoital days 12-13 (n = 2), 13-14 (n = 1), 14-15 (n = 3), 15-16 (n = 2), 16-17 (n = 3), 17-18 (n = 3), and 18-19 (n = 1). Kidneys and bladder were unambiguously depicted prior to contrast agent injection on stage 15-16 embryos. Contrast agent injection allowed kidney, detection as early as stage 12-13 but not bladder. Kinetics of signal changes demonstrated that glomerular filtration is established at embryonic stage 15-16 in mice. Thus, anatomical and dynamic contrast-enhanced magnetic resonance microscopy may be a powerful noninvasive method for in vivo prenatal developmental and functional studies

    Volumetric assessment of myocardial viability in rats using 3D double contrast enhanced T1 and T2-weighted MRI

    Get PDF
    OBJECTIVE: Volumetric evaluation of the myocardial viability post-infarction in rats using 3D in vivo MR imaging at 7 T using injection of an extracellular paramagnetic contrast agent and intravascular superparamagnetic iron oxide nanoparticles in the same imaging session. MATERIALS AND METHODS: Five hours after induction of permanent myocardial infarction in rats (n=6), 3D in vivo T1- and T2-weighted MR Imaging was performed prior to and after Gd-DOTA injection (0.2 mmol/kg) and prior to and after nanoparticle injection (5 mg Fe/kg) to assess infarct size and myocardial viability. RESULTS: 3D MR Imaging using a successive contrast agent injection showed a difference of infarct size after Gd-DOTA injection on T1-weighted images compared to the one measured on T2-weighted images after Gd-DOTA and nanoparticle injection. CONCLUSION: The use of 3D T1- and T2-weighted MR Imaging using a double contrast agents protocol made possible the accurate characterization of myocardial infarction volume and allowed the detection of myocardial viability post-infarction in rats

    Assessment of myocardial viability in rats: Evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field

    Get PDF
    The aim of this study was to detect salvageable peri-infarction myocardium by MRI in rats after infarction, using with a double contrast agent (CA) protocol at 7 Tesla. Intravascular superparamagnetic iron oxide (SPIO) nanoparticles and an extracellular paramagnetic CA (Gd-DOTA) were used to characterize the peri-infarction zone, which may recover function after reperfusion occurs. Infarcted areas measured from T1-weighted (T1-w) images post Gd-DOTA administration were overestimated compared to histological TTC staining (52% +/- 3% of LV surface area vs. 40% +/- 3%, P=0.03) or to T2-w images post SPIO administration (41% +/- 4%, P=0.04), whereas areas measured from T2-w images post SPIO administration were not significantly different from those measured histologically (P=0.7). Viable and nonviable myocardium portions of ischemically injured myocardium were enhanced after diffusive Gd-DOTA injection. The subsequent injection of vascular SPIO nanoparticles enables the discrimination of viable peri-infarction regions by specifically altering the signal of the still-vascularized myocardium

    In vitro and in vivo evaluation of superparamagnetic iron oxide nanoparticles coated by bisphosphonates: the effects of electrical charge and molecule length.

    Get PDF
    Physicochemical coating properties are often considered to be determining factors for in vivo characteristics of superparamagnetic iron oxide nanoparticles, used as contrast agent in Magnetic Resonance Imaging (MRI). To investigate the electrical charge (modified by zero, one or two ammonium groups) and the molecule length (3, 5 or 7 methylene chains) effects of bisphosphonate-type coatings, we assessed the complement activation, in vivo plasma and tissue relaxation time alterations of intravenously injected small iron oxide nanoparticles (<25 nm) on male healthy Wistar rats. The presence of ammonium groups induces a weak activation of the complement whatever the size and the concentration of particles, whereas hydroxyethylenebisphosphonate (HEBP)-coated particles are poor complement activators only at the lowest concentration. In vivo, HEBP-coated nanoparticles have the greatest prolonged relaxation time effects, despite their higher negative electrical charge, contrary to two ammonium bearing coatings. No significant differences were observed between mono-ammonium molecular coatings

    Evaluating SPIO-labelled cell MR efficiency by three-dimensional quantitativeT2* MRI

    Get PDF
    An in vitro MR-assay for superparamagnetic iron oxide (SPIO) particle cell labelling assessment via three-dimensional quantitative T [math image] MR microscopy was proposed. On high-resolution images, and due to the high susceptibility difference between the particles and the surrounding medium, SPIO internalized in cells induces signal loss which may be counted and measured on T [math image] maps. The increase in both labelled cell percentage and the average perturbation volume with an added amount of iron in the incubation medium proved that intracellular iron uptake is dependent upon the initial concentration of incubation iron. It also proved that the observed increases in total cellular iron uptake measured by inductively coupled plasma optical emission spectroscopy are due to both an increase in the iron mass per cell and also an increase in labelled cell concentration. MR results were compared with Prussian blue staining histology. The sensitivity of the MR methodology was then used to distinguish labelling differences for two different types of particle coating. The MRI-assay we proposed is a compulsory tool to optimize labelling efficiency in order to improve in vivo cell detection. Key parameters for detection, such as the percentage of cell labelling, the effect on the image for a given amount of internalized iron and labelling distribution among a cell population, are easily obtained. The comparison of different contrast agents for labelling one cell type, the assessment of one type of contrast agent for labelling different cell types and/or the evaluation of labelling strategies, are possible without having recourse to classical methods, and provide improved accuracy, since the principle is based on intracellular relaxivity

    2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) can identify chronic lymphocytic leukaemia (CLL) stage A et stage B patients

    Get PDF
    Purpose: There is no data in the literature concerning the utility of 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in chronic lymphocytic leukaemia (CLL), except for the diagnosis of Richter\u27s transformations. The purpose of this study was to assess the potential role of FDG-PET in CLL stages A and B. Materials and methods: Thirty-five patients (61 ± 9 years; 11 women, 24 men; 8B and 27A) have benefited of a FDG-PET scan at baseline, for example, before an eventual treatment. FDG-PET scans were analyzed visually and the maximum values of the Standardised Uptake Value (SUVmax) were measured in the main lymph nodes areas. The ability of FDG-PET to differentiate stages A and B patients was evaluated by Student\u27s tests and Receiver Operating Characteristics (ROC) analysis. Results: All patients with a normal FDG-PET (n = 18) were stages A. The remaining 17 patients (9A and 8B) showed hypermetabolisms in nodal areas above (n = 17) and below (n = 9) the diaphragm, and no visceral involvement. The lymph nodes hypermetabolisms were always bilateral, and of low intensity (≤ mediastinum; 9A), or of higher intensity (≥ liver, 8B). The SUVmax of stage B (n = 8) were significantly higher than those of the 27 stages A, in all lymph nodes areas except in mediastinum. The highest intensity of FDG uptake was observed in axillary area in stages B patients (SUVmax = 2.74 ± 1.03). An axillary SUVmax of 1.33 is the most suitable value for the discrimination between stages A and B patients (ROC; AUC = 0.968; sensitivity 1.00; specificity 0.91). Conclusion: Lymph nodes hypermetabolisms are constant in the B stage, and more intense than in stage A. These anomalies are always bilateral, unlike what is observed in Richter\u27s transformation. The intensity of axillary lymph nodes FDG uptake can distinguish CLL stages A and B

    Evaluation of immune responses after nanovectorized internal radiotherapy for glioblastomas

    Get PDF
    Contribution issue du 4e Workshop européen, orgnaisé par le Cancéropôle Grand-Ouest du 22 au 25 septembre 2010 à l'Ile de Berder en France, autour du thème "Biology of ionizing radiation".International audienc
    • …
    corecore