56 research outputs found
Two dimensional Sen connections and quasi-local energy-momentum
The recently constructed two dimensional Sen connection is applied in the
problem of quasi-local energy-momentum in general relativity. First it is shown
that, because of one of the two 2 dimensional Sen--Witten identities, Penrose's
quasi-local charge integral can be expressed as a Nester--Witten integral.Then,
to find the appropriate spinor propagation laws to the Nester--Witten integral,
all the possible first order linear differential operators that can be
constructed only from the irreducible chiral parts of the Sen operator alone
are determined and examined. It is only the holomorphy or anti-holomorphy
operator that can define acceptable propagation laws. The 2 dimensional Sen
connection thus naturally defines a quasi-local energy-momentum, which is
precisely that of Dougan and Mason. Then provided the dominant energy condition
holds and the 2-sphere S is convex we show that the next statements are
equivalent: i. the quasi-local mass (energy-momentum) associated with S is
zero; ii.the Cauchy development is a pp-wave geometry with pure
radiation ( is flat), where is a spacelike hypersurface
whose boundary is S; iii. there exist a Sen--constant spinor field (two spinor
fields) on S. Thus the pp-wave Cauchy developments can be characterized by the
geometry of a two rather than a three dimensional submanifold.Comment: 20 pages, Plain Tex, I
Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.
Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives
Green synthesis of selenium and tellurium nanoparticles : current trends, biological properties and biomedical applications
ABSTRACT: The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants’ extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation
Gravitational Energy in Spherical Symmetry
Various properties of the Misner-Sharp spherically symmetric gravitational
energy E are established or reviewed. In the Newtonian limit of a perfect
fluid, E yields the Newtonian mass to leading order and the Newtonian kinetic
and potential energy to the next order. For test particles, the corresponding
Hajicek energy is conserved and has the behaviour appropriate to energy in the
Newtonian and special-relativistic limits. In the small-sphere limit, the
leading term in E is the product of volume and the energy density of the
matter. In vacuo, E reduces to the Schwarzschild energy. At null and spatial
infinity, E reduces to the Bondi-Sachs and Arnowitt-Deser-Misner energies
respectively. The conserved Kodama current has charge E. A sphere is trapped if
E>r/2, marginal if E=r/2 and untrapped if E<r/2, where r is the areal radius. A
central singularity is spatial and trapped if E>0, and temporal and untrapped
if E<0. On an untrapped sphere, E is non-decreasing in any outgoing spatial or
null direction, assuming the dominant energy condition. It follows that E>=0 on
an untrapped spatial hypersurface with regular centre, and E>=r_0/2 on an
untrapped spatial hypersurface bounded at the inward end by a marginal sphere
of radius r_0. All these inequalities extend to the asymptotic energies,
recovering the Bondi-Sachs energy loss and the positivity of the asymptotic
energies, as well as proving the conjectured Penrose inequality for black or
white holes. Implications for the cosmic censorship hypothesis and for general
definitions of gravitational energy are discussed.Comment: 23 pages. Belatedly replaced with substantially extended published
versio
Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana
Background: CRISPR-Cas is a recent and powerful addition to the molecular toolbox which allows programmable genome editing. It has been used to modify genes in a wide variety of organisms, but only two alga to date. Here we present a methodology to edit the genome of Thalassiosira pseudonana, a model centric diatom with both ecological significance and high biotechnological potential, using CRISPR-Cas. Results: A single construct was assembled using Golden Gate cloning. Two sgRNAs were used to introduce a precise 37 nt deletion early in the coding region of the urease gene. A high percentage of bi-allelic mutations (≤61.5%) were observed in clones with the CRISPR-Cas construct. Growth of bi-allelic mutants in urea led to a significant reduction in growth rate and cell size compared to growth in nitrate. Conclusions: CRISPR-Cas can precisely and efficiently edit the genome of T. pseudonana. The use of Golden Gate cloning to assemble CRISPR-Cas constructs gives additional flexibility to the CRISPR-Cas method and facilitates modifications to target alternative genes or species
Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation
A novel flat panel photobioreactor prototype with bulk liquid flow driven by an external airlift was designed, modeled, and experimentally characterized for the purpose of developing scalable industrial photobioreactors. Baffles were built inside the flat panel part of the reactor, directing the liquid bulk flow in a serpentine way, and the external airlift drove the liquid flow and facilitated gas mass transfer. The gas holdup, liquid flow velocity, and oxygen mass transfer of this prototype were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivating two species of microalgae, Scenedesmus obliquus and Chlorella sorokiniana. The model-predicted trends correlated well with experimental data, indicating that the reactor might be scaled up using these models. A high cell concentration of C. sorokiniana was achieved under controlled indoor cultivation conditions although serious biofouling occurred in the case of S. obliquus cultivation. The results favor the possibility of scaling up the reactor to industrial scales, based on the models employed, and the potential advantages and disadvantages of the reactor are discussed regarding this industry-oriented photobioreactor configuration in comparison with current industrial photobioreactors. © 2014 Springer Science+Business Media Dordrecht
Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation
A novel flat panel photobioreactor prototype with bulk liquid flow driven by an external airlift was designed, modeled, and experimentally characterized for the purpose of developing scalable industrial photobioreactors. Baffles were built inside the flat panel part of the reactor, directing the liquid bulk flow in a serpentine way, and the external airlift drove the liquid flow and facilitated gas mass transfer. The gas holdup, liquid flow velocity, and oxygen mass transfer of this prototype were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivating two species of microalgae, Scenedesmus obliquus and Chlorella sorokiniana. The model-predicted trends correlated well with experimental data, indicating that the reactor might be scaled up using these models. A high cell concentration of C. sorokiniana was achieved under controlled indoor cultivation conditions although serious biofouling occurred in the case of S. obliquus cultivation. The results favor the possibility of scaling up the reactor to industrial scales, based on the models employed, and the potential advantages and disadvantages of the reactor are discussed regarding this industry-oriented photobioreactor configuration in comparison with current industrial photobioreactors. © 2014 Springer Science+Business Media Dordrecht
- …