33,067 research outputs found

    Gravitational energy

    Full text link
    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.Comment: 12 pages. Accepted for publication in Class. Quantum Gra

    Integral Constraints On cosmological Perturbations and their Energy

    Full text link
    We show the relation between Traschen's integral equations and the energy, and ``position of the centre of mass'', of the matter perturbations in a Robertson-Walker spacetime. When the perturbations are ``localised'' we get a set of integral constraints that includes hers. We illustrate them on a simple example.Comment: 19 pages, Tex file, submitted to Classical and Quantum Gravit

    On the mass of a Kerr-anti-de Sitter spacetime in D dimensions

    Full text link
    We show how to compute the mass of a Kerr-anti-de Sitter spacetime with respect to the anti-de Sitter background in any dimension, using a superpotential which has been derived from standard Noether identities. The calculation takes no account of the source of the curvature and confirms results obtained for black holes via the first law of thermodynamics.Comment: minor changes; accepted by CQ

    Magmatic intrusions control Io's crustal thickness

    Full text link
    Io, the most volcanically active body in the solar system, loses heat through eruptions of hot lava. Heat is supplied by tidal heating and is thought to be transferred through the mantle by magmatic segregation, a mode of transport that sets it apart from convecting terrestrial planets. We present a model that couples magmatic transport of tidal heat to the volcanic system in the crust, in order to determine the controls on crustal thickness, magmatic intrusions, and eruption rates. We demonstrate that magmatic intrusions are a key component of Io's crustal heat balance; around 80% of the magma delivered to the base of the crust must be emplaced and frozen as plutons to match rough estimates of crustal thickness. As magma ascends from a partially molten mantle into the crust, a decompacting boundary layer forms, which can explain inferred observations of a high-melt-fraction region.Comment: Accepted to JGR:Planets. 24 pages inc appendices and references. 7 figure

    Unequal Intra-layer Coupling in a Bilayer Driven Lattice Gas

    Full text link
    The system under study is a twin-layered square lattice gas at half-filling, being driven to non-equilibrium steady states by a large, finite `electric' field. By making intra-layer couplings unequal we were able to extend the phase diagram obtained by Hill, Zia and Schmittmann (1996) and found that the tri-critical point, which separates the phase regions of the stripped (S) phase (stable at positive interlayer interactions J_3), the filled-empty (FE) phase (stable at negative J_3) and disorder (D), is shifted even further into the negative J_3 region as the coupling traverse to the driving field increases. Many transient phases to the S phase at the S-FE boundary were found to be long-lived. We also attempted to test whether the universality class of D-FE transitions under a drive is still Ising. Simulation results suggest a value of 1.75 for the exponent gamma but a value close to 2.0 for the ratio gamma/nu. We speculate that the D-FE second order transition is different from Ising near criticality, where observed first-order-like transitions between FE and its "local minimum" cousin occur during each simulation run.Comment: 29 pages, 19 figure

    The intrinsic electrical equivalent circuit of a laser diode

    Get PDF
    The basic electrical equivalent circuit of a laser diode is derived. The effects of spontaneous emission and self-pulsations are included. It is found that self-pulsations are represented by a negative resistance in the model. Application of this model suggests purely electronic methods of suppressing relaxation oscillations in laser diodes

    The preparation, identification and properties of chlorophyll derivatives

    Get PDF
    In the investigation of 10-hydroxy chlorophylls a and b novel techniques included modification of chromatography and the use of fully-deuterated compounds isolated from fully-deuterated autotropic algae to determine the molecular structure of the chlorophylls

    Coupling mechanism of gain-guided integrated semiconductor laser arrays

    Get PDF
    It is shown that a gain-guided laser array couples via propagating fields rather than the evanescent mode coupling typically responsible for directional coupling in passive (directional couplers) and active (laser array) devices. We show that these phase-locked modes exhibit an interference pattern, in the junction plane, which arises from the curvature of the phase fronts of optical fields of the interacting lasers. The experimental results are interpreted with the aid of a simple theoretical model, and the effect of the observed mode pattern on the coupling of gain-guided lasers is discussed

    Chirped arrays of diode lasers for supermode control

    Get PDF
    We propose nonuniform structures of phase-locked diode lasers, which make it possible to discriminate efficiently against all the higher order array supermodes (lateral modes). In these nonuniform arrays, the effective mode index in each channel varies across the array. Consequently, the envelopes of the various supermodes, including the highest order one, differ significantly from each other. Thus, by proper tailoring of the gain distribution across the array, one can conveniently select the fundamental supermode. Such fundamental supermode oscillation is essential in order to obtain single lobe, diffraction limited beams and minimal spectral spread from phase-locked laser arrays

    Control of mutual phase locking of monolithically integrated semiconductor lasers

    Get PDF
    The mutual coherence of two coupled semiconductor lasers is investigated experimentally. It is demonstrated that by varying the gain in the overlap region, the degree of phase coherence can be continuously controlled. The quantitative characterization of the degree of phase coherence by fringe visibility is demonstrated
    corecore