74 research outputs found

    Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery

    Get PDF
    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta

    External Aortic Root Support to Prevent Aortic Dilatation in Patients With Marfan Syndrome

    Get PDF
    Background: Personalized external aortic root support (PEARS) was introduced in 2004 for prevention of aortic root dilatation in Marfan patients. The individual's aortic root is replicated by 3-dimensional printing. A polymer mesh sleeve is manufactured, which is implanted with the aim to support and stabilize the aortic wall. / Objectives: The aim of this study was to assess effectiveness of PEARS for prevention of aortic root dilatation in Marfan patients. / Methods: A total of 24 consecutive Marfan patients operated 2004 to 2012 were prospectively monitored with magnetic resonance imaging. Following a pre-defined protocol, baseline and follow-up aorta measurements were made in a blinded random sequence. / Results: The mean age of the patients was 33 ± 13.3 years (range: 16 to 58 years), and the mean aortic root diameter was 45 ± 2.8 mm (range: 41 to 52 mm). Follow-up was 6.3 ± 2.6 years. There was no increase in the aortic root and ascending aorta diameters, but there was a tendency toward reduction: annulus diameter 28.9 ± 2.3 mm to 28.5 ± 2.4 mm (change −0.39 mm, 95% confidence interval [CI]: −1.05 to 0.27 mm), sinus of Valsalva diameter 44.9 ± 2.9 mm to 44.5 ± 3.0 mm (change −0.37 mm, 95% CI: −1.23 to 0.51 mm), and ascending aorta diameter 32.4 ± 3.6 mm to 32.3 ± 3.7 mm (change −0.10 mm, 95% CI: −0.92 to 0.74 mm). In the same period, the descending aorta diameter increased from 22.9 ± 2.4 mm to 24.2 ± 3.0 mm (change 1.32 mm, 95% CI: 0.70 to 1.94 mm; p < 0.001) with a tendency toward increase in aortic arch diameter 24.1 ± 2.0 mm to 24.5 ± 2.8 mm (change 0.41 mm, 95% CI: −0.56 to 1.37 mm). / Conclusions: PEARS is effective in stabilizing the aortic root and preventing its dilatation. It is a viable alternative for prevention of aortic root dissection in Marfan patients

    Validation of T2* in-line analysis for tissue iron quantification at 1.5 T.

    Get PDF
    BACKGROUND: There is a need for improved worldwide access to tissue iron quantification using T2* cardiovascular magnetic resonance (CMR). One route to facilitate this would be simple in-line T2* analysis widely available on MR scanners. We therefore compared our clinically validated and established T2* method at Royal Brompton Hospital (RBH T2*) against a novel work-in-progress (WIP) sequence with in-line T2* measurement from Siemens (WIP T2*). METHODS: Healthy volunteers (n = 22) and patients with iron overload (n = 78) were recruited (53 males, median age 34 years). A 1.5 T study (Magnetom Avanto, Siemens) was performed on all subjects. The same mid-ventricular short axis cardiac slice and transaxial slice through the liver were used to acquire both RBH T2* images and WIP T2* maps for each participant. Cardiac white blood (WB) and black blood (BB) sequences were acquired. Intraobserver, interobserver and interstudy reproducibility were measured on the same data from a subset of 20 participants. RESULTS: Liver T2* values ranged from 0.8 to 35.7 ms (median 5.1 ms) and cardiac T2* values from 6.0 to 52.3 ms (median 31 ms). The coefficient of variance (CoV) values for direct comparison of T2* values by RBH and WIP were 6.1-7.8 % across techniques. Accurate delineation of the septum was difficult on some WIP T2* maps due to artefacts. The inability to manually correct for noise by truncation of erroneous later echo times led to some overestimation of T2* using WIP T2* compared with the RBH T2*. Reproducibility CoV results for RBH T2* ranged from 1.5 to 5.7 % which were better than the reproducibility of WIP T2* values of 4.1-16.6 %. CONCLUSIONS: Iron estimation using the T2* CMR sequence in combination with Siemens' in-line data processing is generally satisfactory and may help facilitate global access to tissue iron assessment. The current automated T2* map technique is less good for tissue iron assessment with noisy data at low T2* values

    Association between mid-wall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction

    Get PDF
    Background—Current guidelines only recommend the use of an implantable cardioverter defibrillator (ICD) in patients with dilated cardiomyopathy (DCM) for the primary prevention of sudden cardiac death (SCD) in those with a left ventricular ejection fraction (LVEF)35%. Patients with a LVEF>35% also have low competing risks of death from non-sudden causes. Therefore, those at high-risk of SCD may gain longevity from successful ICD therapy. We investigated whether late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) identified patients with DCM without severe LV systolic dysfunction at high-risk of SCD. Methods—We prospectively investigated the association between mid-wall late gadolinium enhancement (LGE) and the pre-specified primary composite outcome of SCD or aborted SCD amongst consecutive referrals with DCM and a LVEF≥40% to our center between January 2000 and December 2011, who did not have a pre-existing indication for ICD implantation. Results—Of 399 patients (145 women, median age 50 years, median LVEF 50%, 25.3% with LGE) followed for a median of 4.6 years, 18 of 101 (17.8%) patients with LGE reached the pre-specified end-point, compared to 7 of 298 (2.3%) without (HR 9.2; 95% CI 3.9-21.8; p5% compared to those without LGE were 10.6 (95%CI 3.9-29.4), 4.9 (95% CI 1.3-18.9) and 11.8 (95% CI 4.3-32.3) respectively. Conclusions—Mid-wall LGE identifies a group of patients with DCM and LVEF≥40% at increased risk of SCD and low-risk of non-sudden death who may benefit from ICD implantation

    Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron.

    Get PDF
    BACKGROUND: T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T. METHODS: A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*. RESULTS: Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007). CONCLUSION: Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*

    'Diffuse cerebrospinal gliomatosis'

    No full text
    corecore