1,409 research outputs found

    Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene

    Full text link
    An exact solution is obtained for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene. The graphene is represented by an infinitesimally-thin, local and isotropic two-sided conductivity surface. The field is obtained in terms of dyadic Green's functions represented as Sommerfeld integrals. The solution of plane-wave reflection and transmission is presented, and surface wave propagation along graphene is studied via the poles of the Sommerfeld integrals. For isolated graphene characterized by complex surface conductivity, a proper transverse-electric (TE) surface wave exists if and only if the imaginary part of conductivity is positive (associated with interband conductivity), and a proper transverse-magnetic (TM) surface wave exists when the imaginary part of conductivity is negative (associated with intraband conductivity). By tuning the chemical potential at infrared frequencies, the sign of the imaginary part of conductivity can be varied, allowing for some control over surface wave properties.Comment: 9 figure

    Scattering of Pruppacher-Pitter raindrops at 30 GHz

    Get PDF
    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Radiative Transfer Limits of Two-Frequency Wigner Distribution for Random Parabolic Waves

    Get PDF
    The present note establishes the self-averaging, radiative transfer limit for the two-frequency Wigner distribution for classical waves in random media. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The limiting equation is used to estimate three physical parameters: the spatial spread, the coherence length and the coherence bandwidth. In the longitudinal case, the Fokker-Planck-like equation can be solved exactly.Comment: typos correcte

    Space-frequency correlation of classical waves in disordered media: high-frequency and small scale asymptotics

    Full text link
    Two-frequency radiative transfer (2f-RT) theory is developed for geometrical optics in random media. The space-frequency correlation is described by the two-frequency Wigner distribution (2f-WD) which satisfies a closed form equation, the two-frequency Wigner-Moyal equation. In the RT regime it is proved rigorously that 2f-WD satisfies a Fokker-Planck-like equation with complex-valued coefficients. By dimensional analysis 2f-RT equation yields the scaling behavior of three physical parameters: the spatial spread, the coherence length and the coherence bandwidth. The sub-transport-mean-free-path behavior is obtained in a closed form by analytically solving a paraxial 2f-RT equation

    Spectral Dependence of Coherent Backscattering of Light in a Narrow-Resonance Atomic System

    Get PDF
    We report a combined theoretical and experimental study of the spectral and polarization dependence of near resonant radiation coherently backscattered from an ultracold gas of 85Rb atoms. Measurements in an approximately 6 MHz range about the 5s^{2}S_{1/2}- 5p^{2}P_{3/2}, F=3 - F'=4 hyperfine transition are compared with simulations based on a realistic model of the experimental atomic density distribution. In the simulations, the influence of heating of the atoms in the vapor, magnetization of the vapor, finite spectral bandwidth, and other nonresonant hyperfine transitions are considered. Good agreement is found between the simulations and measurements.Comment: 10 pages, 12 figur

    Explosive nucleosynthesis in core-collapse supernovae

    Full text link
    The specific mechanism and astrophysical site for the production of half of the elements heavier than iron via rapid neutron capture (r-process) remains to be found. In order to reproduce the abundances of the solar system and of the old halo stars, at least two components are required: the heavy r-process nuclei (A>130) and the weak r-process which correspond to the lighter heavy nuclei (A<130). In this work, we present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. We show that the weak r-process elements can be produced in neutrino-driven winds and we relate their abundances to the neutrino emission from the nascent neutron star. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We use this to study the impact of the nuclear physics input (nuclear masses, neutron capture cross sections, and beta-delayed neutron emission) and of the long-time dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of Physics: Conference Serie
    • …
    corecore