99 research outputs found
Enhanced infrared sparse pattern extraction and usage for impact evaluation of basalt-carbon hybrid composites by pulsed thermography
Nowadays, infrared thermography, as a widely used non-destructive testing method, is increasingly studied for impact evaluation of composite structures. Sparse pattern extraction is attracting increasing attention as an advanced post-processing method. In this paper, an enhanced sparse pattern extraction framework is presented for thermographic sequence processing and defect detection. This framework adapts cropping operator and typical component extraction as a preprocessing step to reduce the dimensions of raw data and applies sparse pattern extraction algorithms to enhance the contrast on the defect area. Different cases are studied involving several defects in four basalt-carbon hybrid fiber-reinforced polymer composite laminates. Finally, comparative analysis with intensity distribution is carried out to verify the effectiveness of contrast enhancement using this framework
Recommended from our members
Autonomous systems thermographic NDT of composite structures
Transient thermography is a method used successfully in the evaluation of composite materials and aerospace structures. It has the capacity to deliver both qualitative and quantitative results about hidden defects or features in a composite structure. Aircraft must undergo routine maintenance – inspection to check for any critical damage and thus to ensure its safety. This work aims to address the challenge of NDT automated inspection and improve the defects’ detection by suggesting an autonomous thermographic imaging approach using a UAV (Unmanned Aerial Vehicle) active thermographic system. The concept of active thermography is discussed and presented in the inspection of aircraft CFRP panels along with the mission planning for aerial inspection using the UAV for real time inspection. Results indicate that the suggested approach could significantly reduce the inspection time, cost, and workload, whilst potentially increase the probability of detection of defects on aircraft composites
Recommended from our members
Application of NDT thermographic imaging of aerospace structures
This work aims to address the effectiveness and challenges of Non-Destructive Testing (NDT) inspection and improve the detection of defects without causing damage to the material or operator. It focuses on two types of NDT methods; pulsed thermography and vibrothermography. The paper also explores the possibility of performing automated aerial inspection using an unmanned aerial vehicle (UAV) provided with a thermographic imaging system. The concept of active thermography is discussed for inspecting aircraft CFRP panels along with the proposal for performing aerial inspection using the UAV for real time inspection. Static NDT results and the further UAV research indicate that the UAV inspection approach could significantly reduce the inspection time, cost, and workload, whilst potentially increasing the probability of detection
Infrared vision for artwork and cultural heritage NDE studies: principles and case studies
This text briefly presents the basis of 'infrared vision' in the context of cultural heritage studies. Infrared vision here encompasses near-infrared as well as thermal infrared schemes of inspection. The theory is briefly presented and attention is then focused on several non-destructive evaluation (NDE) case studies in cultural heritage: painting artwork, under-painting lettering retrieval and the investigation of Egyptian pyramids through the ScanPyramids Mission, led by the Faculty of Engineering of Cairo University and the HIP (Heritage Innovation Preservation) Institute
Recommended from our members
Autonomous Systems Imaging of Aerospace Structures
Manufacturers are constantly looking for more cost-efficient means to produce aircraft components. An effective way to do this is to reduce the weight, which results in less fuel required to power the aircraft. This has led to an increased use of composite materials. Carbon fibre reinforced polymer (CFRP) composite is used in industries where high strength and rigidity are required in relation to weight. e.g. in aviation – transport. The fibre-reinforced matrix systems are extremely strong (i.e. have excellent mechanical properties and high resistance to corrosion). However, because of the nature of the CFRP, it does not dint or bend, as aluminium would do when damaged, it makes it difficult to locate structural damage, especially subsurface. Non-Destructive Testing (NDT) is a wide group of analysis techniques used to evaluate the properties of a material, component or system without causing damage to the operator or material. Active Thermography is one of the NDT risk-free methods used successfully in the evaluation of composite materials. This approach has the ability to provide both qualitative and quantitative information about hidden defects or features in a composite structure. Aircraft must undergo routine maintenance –inspection to asses for any critical damage and thus to ensure its safety. This work aims to address the challenge of NDT automated inspection and improve the defects’ detection by performing automated aerial inspection using an Unmanned Aerial Vehicle (UAV) thermographic imaging system. The concept of active thermography is discussed and presented in the inspection of aircraft’s CFRP panels along with the mission planning for aerial inspection using the UAV for real time inspection. Results indicate that this inspection approach could significantly reduce the inspection time, cost, and workload, whilst potentially increasing the probability of detection
Comparison of Cooled and Uncooled IR Sensors by Means of Signal-to-Noise Ratio for NDT Diagnostics of Aerospace Grade Composites
This work aims to address the effectiveness and challenges of non-destructive testing (NDT) by active infrared thermography (IRT) for the inspection of aerospace-grade composite samples and seeks to compare uncooled and cooled thermal cameras using the signal-to-noise ratio (SNR) as a performance parameter. It focuses on locating impact damages and optimising the results using several signal processing techniques. The work successfully compares both types of cameras using seven different SNR definitions, to understand if a lower-resolution uncooled IR camera can achieve an acceptable NDT standard. Due to most uncooled cameras being small, lightweight, and cheap, they are more accessible to use on an unmanned aerial vehicle (UAV). The concept of using a UAV for NDT on a composite wing is explored, and the UAV is also tracked using a localisation system to observe the exact movement in millimetres and how it affects the thermal data. It was observed that an NDT UAV can access difficult areas and, therefore, can be suggested for significant reduction of time and cost
Evaluation and selection of video stabilization techniques for UAV-based active infrared thermography application
nmanned Aerial Vehicles (UAVs) that can fly around an aircraft carrying several sensors, e.g., thermal and optical cameras, to inspect the parts of interest without removing them can have significant impact in reducing inspection time and cost. One of the main challenges in the UAV based active InfraRed Thermography (IRT) inspection is the UAV’s unexpected motions. Since active thermography is mainly concerned with the analysis of thermal sequences, unexpected motions can disturb the thermal profiling and cause data misinterpretation especially for providing an automated process pipeline of such inspections. Additionally, in the scenarios where post-analysis is intended to be applied by an inspector, the UAV’s unexpected motions can increase the risk of human error, data misinterpretation, and incorrect characterization of possible defects. Therefore, post-processing is required to minimize/eliminate such undesired motions using digital video stabilization techniques. There are number of video stabilization algorithms that are readily available; however, selecting the best suited one is also challenging. Therefore, this paper evaluates video stabilization algorithms to minimize/mitigate undesired UAV motion and proposes a simple method to find the best suited stabilization algorithm as a fundamental first step towards a fully operational UAV-IRT inspection system
- …