21,434 research outputs found

    collected from South and South-eastern regions of Turkey

    Get PDF
    A total of 45 lizards (Acanthodactylus harranensis [n = 15], Acanthodacthylus schreiberi [n = 9] and Mesalina brevirostris [n = 21]) were collected from South and Southeastern Regions of Turkey and examined for helminth fauna. Acanthodactylus harranensis harbored 1 species of Nematoda (Skrjabinodon sp.), 1 species of Cestoda (Oochoristica tuberculata) and 1 species of Acanthocephala (Centrorhynchus sp. [cystacanth]). Acanthodactylus schreiberi harbored unidentified cysticercoids. Mesalina brevirostris harbored 1 species of Nematoda (Spauligodon saxicolae). All lizards represents new host records for the helminths reported in this study

    Transformation of UML interaction diagrams into contract specifications for object-oriented testing

    Get PDF
    Testing is an important means to ensure the quality of software systems. Contract specification can be used to formally specify the cluster level of object-oriented software, which can then be tested using TACCLE, an advanced methodology for object-oriented testing. The use of formal specifications as a testing base has many advantages. However, such specifications are not easily understood and therefore not widely used in the software industry. On the other hand, UML, a semi-formal modeling language, is becoming increasingly popular and widely accepted. In particular, UML interaction diagrams specify the dynamic, interacting behavior among the objects of an object-oriented system. If the transformation of UML interaction diagrams into Contract specifications can be automated, the TACCLE methodology can be applied directly to test object-oriented software at the cluster level. In this paper, a method to transform UML interaction diagrams into Contract specifications is proposed based on the UML meta-model. A prototype has been developed. © 2007 IEEE.published_or_final_versio

    Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons

    Get PDF
    We experimentally and theoretically demonstrate subwavelength scale localization of spoof surface plasmon polaritons at a point defect in a two-dimensional groove metal array. An analytical expression for dispersion relation of spoof surface plasmon polaritons substantiates the existence of a band gap where a defect mode can be introduced. A waveguide coupling method allows us to excite localized spoof surface plasmon polariton modes and measure their resonance frequencies. Numerical calculations confirm that localized modes can have a very small modal volume and a high Q factor both of which are essential in enhancing light-matter interactions. Interestingly, we find that the localized spoof surface plasmon polariton has a significant toroidal dipole moment, which is responsible for the high Q factor, as well as an electric quadrupole moment. In addition, the dispersion properties of spoof surface plasmon polaritons are analyzed using a modal expansion method and numerical calculations

    Evaluation of M-Sites Using PDAs

    Get PDF
    As mobile sites (m-sites) are introduced a very relevant question to ask is “How should these sites be different from the typical websites developed for desktop PCs?” This paper presents an initial, exploratory attempt to address some issues related to m-sites. This evaluation of sites was conducted using wireless PDAs in a WLAN environment. The results indicated that regular sites and m-sites differed significantly in perceived search engine functionality. The evaluated m-sites showed little differences across various industries. A discussion of these results as well as recommendations for managers and academic researchers are provided

    Correspondence

    Get PDF

    Frequency stabilization of DBR fiber grating laser using interferometric technique

    Get PDF
    Author name used in this publication: W. H. ChungAuthor name used in this publication: H. Y. TamAuthor name used in this publication: M. S. DemokanAuthor name used in this publication: P. K. A. WaiAuthor name used in this publication: C. Lu2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    Radiative transfer simulations of cosmic reionization I: methodology and initial results

    Get PDF
    We present a new hybrid code for large volume, high resolution simulations of cosmic reionization, which utilizes a N-body algorithm for dark matter, physically motivated prescriptions for baryons and star formation, and an adaptive ray tracing algorithm for radiative transfer of ionizing photons. Two test simulations each with 3 billion particles and 400 million rays in a 50 Mpc/h box have been run to give initial results. Halos are resolved down to virial temperatures of 10^4 K for the redshift range of interest in order to robustly model star formation and clumping factors. This is essential to correctly account for ionization and recombination processes. We find that the halos and sources are strongly biased with respect to the underlying dark matter, re-enforcing the requirement of large simulation boxes to minimize cosmic variance and to obtain a qualitatively correct picture of reionization. We model the stellar initial mass function (IMF), by following the spatially dependent gas metallicity evolution, and distinguish between the first generation, Population III (PopIII) stars and the second generation, Population II (PopII) stars. The PopIII stars with a top-heavy IMF produce an order of magnitude more ionizing photons at high redshifts z>10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurrs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5<z<6.5 are both in good agreement with high redshift quasar absorption measurements from SDSS. The values for the Thomson optical depth are consistent within 1-sigma of the current best-fit value from third-year WMAP.Comment: 15 pages, 13 figures; accepted by ApJ; higher resolution figures can be found at http://www.astro.princeton.edu/~htrac/reionization.htm

    Complete genome assembly and characterization of an outbreak strain of the causative agent of swine erysipelas – Erysipelothrix rhusiopathiae SY1027

    Get PDF
    BACKGROUND: Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and, to a fewer occurrences, human erysipeloid. It is ubiquitous in nature and commensal in diverse species of animals, wild or domestic, from mammals and birds to reptiles and fish. Mechanisms of its virulence and pathogenicity are poorly understood. RESULTS: Making use of the complete genome sequencing of E. rhusiopathiae strain SY1027 and comparative genome analysis between the three highly pathogenic strains (SY1027, Fujisawa and ATCC19414), the genomic structure and putative functional elements, such as pathogenicity island (PAI)-like regions, potential virulence factors and horizontal transferring genes of the bacteria are identified. Strain SY1027 genome is 1,752,910 base pairs long, just 30 kilobases smaller than strain Fujisawa, with the same GC level of 36.36%. It contains 1,845 open reading frames (ORF) predicted by GLIMMER 3.02, of which 1,775 were annotated by PGAAP, 1,757 (~95.23%) were annotated by NCBI nr blast, 1,209 by COG database and 1,076 by KEGG database. 37 potential virulence factors were annotated in strain SY1027 by VFDB, while 19 (~51.35%) of them are common in the 2 strains, 7 of which are potentially related to antibiotic resistance and highly conserved (~98-100% match identity (ID)) amongst the three strains of E. rhusiopathiae and modestly homologous to other gastrointestinal tract-inhabiting Firmicutes (~40% match ID), e.g. Clostridium spp., Enterococcus spp. Genomic island- and pathogenicity island-like regions were also predicted, in which some showed association with tRNA and potential virulence factors. CONCLUSION: Complete genome sequencing of Erysipelothrix rhusiopathiae, the causative agent of animal erysipelas, was performed. Molecular identification of various genomic elements pave the way to the better understanding of mechanisms underlying metabolic capabilities, pathogenicity of swine erysipelas and prospective vaccine targets besides the widely used SpaA antigens
    corecore