1,741 research outputs found

    The potential negative impact of antibiotic pack on antibiotic stewardship in primary care in Switzerland: a modelling study.

    Get PDF
    BACKGROUND: In Switzerland, oral antibiotics are dispensed in packs rather than by exact pill-count. We investigated whether available packs support compliance with recommended primary care treatment regimens for common infections in children and adults. METHODS: Hospital-based guidelines for oral community -based treatment of acute otitis media, sinusitis, tonsillopharyngitis, community-acquired pneumonia and afebrile urinary tract infection were identified in 2017 in an iterative process by contacting hospital pharmacists and infectious diseases specialists. Furthermore, newly available national guidelines published in 2019 were reviewed. Available pack sizes for recommended solid, dispersible and liquid antibiotic formulations were retrieved from the Swiss pharmaceutical register and compared with recommended regimens to determine optimal (no leftovers) and adequate (optimal +/- one dose) matches. RESULTS: A large variety of recommended regimens were identified. For adults, optimal and adequate packs were available for 25/70 (36%) and 8/70 (11%) regimens, respectively. Pack-regimen matching was better for WHO Watch (optimal: 15/24, 63%) than Access antibiotics (optimal: 7/39, 18%). For the four paediatric weight-examples and 42 regimens involving child-appropriate formulations, optimal and adequate packs were available for only 14/168 (8%) and 27/168 (16%), respectively. Matching was better for older children with higher body and for longer treatment courses > 7 days. CONCLUSIONS: Fixed antibiotic packs often do not match recommended treatment regimens, especially for children, potentially resulting in longer than necessary treatments and leftover doses in the community. As part of national stewardship, a move to an exact pill-count system, including for child-appropriate solid formulations, should be considered

    Unambiguous state discrimination in quantum cryptography with weak coherent states

    Full text link
    The use of linearly independent signal states in realistic implementations of quantum key distribution (QKD) enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for secure QKD imposed by this fact taking into account that the receiver can monitor to some extend the photon number statistics of the signals even with todays standard detection schemes. We compare our attack to the beamsplitting attack and show that security against beamsplitting attack does not necessarily imply security against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of beamsplitting attac

    Estimates for practical quantum cryptography

    Get PDF
    In this article I present a protocol for quantum cryptography which is secure against attacks on individual signals. It is based on the Bennett-Brassard protocol of 1984 (BB84). The security proof is complete as far as the use of single photons as signal states is concerned. Emphasis is given to the practicability of the resulting protocol. For each run of the quantum key distribution the security statement gives the probability of a successful key generation and the probability for an eavesdropper's knowledge, measured as change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio

    Single Qubit Quantum Secret Sharing

    Full text link
    We present a simple and practical protocol for the solution of a secure multiparty communication task, the secret sharing, and its experimental realization. In this protocol, a secret message is split among several parties in a way that its reconstruction require the collaboration of the participating parties. In the proposed scheme the parties solve the problem by a sequential communication of a single qubit. Moreover we show that our scheme is equivalent to the use of a multiparty entangled GHZ state but easier to realize and better scalable in practical applications.Comment: 5 pages, 2 figures, submitted December 29, 200

    Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer

    Get PDF
    Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre–Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy − Rcx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre–Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism

    Experimental demonstration of coupled optical springs

    Get PDF
    Optical rigidity will play an important role in improving the sensitivity of future generations of gravitational wave (GW) interferometers, which employ high laser power in order to reach and exceed the standard quantum limit. Several experiments have demonstrated the combined effect of two optical springs on a single system for very low-weight mirror masses or membranes. In this paper we investigate the complex interactions between multiple optical springs and the surrounding apparatus in a system of comparable dynamics to a large-scale GW detector. Using three 100 g mirrors to form a coupled cavity system capable of sustaining two or more optical springs, we demonstrate a number of different regimes of opto-mechanical rigidity and measurement techniques. Our measurements reveal couplings between each optical spring and the control loops that can affect both the achievable increase in sensitivity and the stability of the system. Hence this work establishes a better understanding of the realisation of these techniques and paves the way to their application in future GW observatories, such as upgrades to Advanced LIGO

    Novel technique for thermal lens measurement in commonly used optical components

    Get PDF
    The absorption of light in transmissive optics cause a thermally induced effect known as thermal lensing. This effect provokes an often undesired change of a laser beam transmitted by the optic. In this paper we present a measurement method that allows us to determine thermal lensing in commonly used optical components. The beam influenced by the thermal lens is expanded into the eigenmodes of an optical cavity, and its modal content is analyzed in the eigenbasis of the cavity. The measured quantity depends neither on beam parameters nor on the position of the optical component under investigation. This method allows, to our knowledge, for the first time the direct measurement of the mode conversion coefficient je2j of the thermal lens

    miRA: adaptable novel miRNA identification in plants using small RNA sequencing data

    No full text
    BACKGROUND: MicroRNAs (miRNAs) are short regulatory RNAs derived from longer precursor RNAs. miRNA biogenesis has been studied in animals and plants, recently elucidating more complex aspects, such as non-conserved, species-specific, and heterogeneous miRNA precursor populations. Small RNA sequencing data can help in computationally identifying genomic loci of miRNA precursors. The challenge is to predict a valid miRNA precursor from inhomogeneous read coverage from a complex RNA library: while the mature miRNA typically produces many sequence reads, the remaining part of the precursor is covered very sparsely. As recent results suggest, alternative miRNA biogenesis pathways may lead to a more diverse miRNA precursor population than previously assumed. In plants, the latter manifests itself in e.g. complex secondary structures and expression from multiple loci within precursors. Current miRNA identification algorithms often depend on already existing gene annotation, and/or make use of specific miRNA precursor features such as precursor lengths, secondary structures etc. Consequently and in view of the emerging new understanding of a more complex miRNA biogenesis in plants, current tools may fail to characterise organism-specific and heterogeneous miRNA populations. RESULTS: miRA is a new tool to identify miRNA precursors in plants, allowing for heterogeneous and complex precursor populations. miRA requires small RNA sequencing data and a corresponding reference genome, and evaluates precursor secondary structures and precursor processing accuracy; key parameters can be adapted based on the specific organism under investigation. We show that miRA outperforms the currently best plant miRNA prediction tools both in sensitivity and specificity, for data involving Arabidopsis thaliana and the Volvocine algae Chlamydomonas reinhardtii; the latter organism has been shown to exhibit a heterogeneous and complex precursor population with little cross-species miRNA sequence conservation, and therefore constitutes an ideal model organism. Furthermore we identify novel miRNAs in the Chlamydomonas-related organism Volvox carteri. CONCLUSIONS: We propose miRA, a new plant miRNA identification tool that is well adapted to complex precursor populations. miRA is particularly suited for organisms with no existing miRNA annotation, or without a known related organism with well characterized miRNAs. Moreover, miRA has proven its ability to identify species-specific miRNAs. miRA is flexible in its parameter settings, and produces user-friendly output files in various formats (pdf, csv, genome-browser-suitable annotation files, etc.). It is freely available at https://github.com/mhuttner/miRA .The authors acknowledge funding from the Deutsche Forschungsgemeinschaft (SFB 960), the Bavarian Genome Research Network (BayGene), and the Bavarian Biosystems Network (BioSysNet)

    Security against eavesdropping in quantum cryptography

    Get PDF
    In this article we deal with the security of the BB84 quantum cryptography protocol over noisy channels using generalized privacy amplification. For this we estimate the fraction of bits needed to be discarded during the privacy amplification step. This estimate is given for two scenarios, both of which assume the eavesdropper to access each of the signals independently and take error correction into account. One scenario does not allow a delay of the eavesdropper's measurement of a measurement probe until he receives additional classical information. In this scenario we achieve a sharp bound. The other scenario allows a measurement delay, so that the general attack of an eavesdropper on individual signals is covered. This bound is not sharp but allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in my Phys. Rev. A pape
    corecore