481 research outputs found

    Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective.

    Get PDF
    Hemagglutinins (HA's) from duck, swine, and human influenza viruses have previously been shown to prefer avian and human glycan receptor analogues with distinct topological profiles, pentasaccharides LSTa (alpha-2,3 linkage) and LSTc (alpha-2,6 linkage), in comparative molecular dynamics studies. On the basis of detailed analyses of the dynamic motions of the receptor binding domains (RBDs) and interaction energy profiles with individual glycan residues, we have identified approximately 30 residue positions in the RBD that present distinct profiles with the receptor analogues. Glycan binding constrained the conformational space sampling by the HA. Electrostatic steering appeared to play a key role in glycan binding specificity. The complex dynamic behaviors of the major SSE and trimeric interfaces with or without bound glycans suggested that networks of interactions might account for species specificity in these low affinity and high avidity (multivalent) interactions between different HA and glycans. Contact frequency, energetic decomposition, and H-bond analyses revealed species-specific differences in HA-glycan interaction profiles, not readily discernible from crystal structures alone. Interaction energy profiles indicated that mutation events at the set of residues such as 145, 156, 158, and 222 would favor human or avian receptor analogues, often through interactions with distal asialo-residues. These results correlate well with existing experimental evidence, and suggest new opportunities for simulation-based vaccine and drug development

    Weak convergence of Vervaat and Vervaat Error processes of long-range dependent sequences

    Full text link
    Following Cs\"{o}rg\H{o}, Szyszkowicz and Wang (Ann. Statist. {\bf 34}, (2006), 1013--1044) we consider a long range dependent linear sequence. We prove weak convergence of the uniform Vervaat and the uniform Vervaat error processes, extending their results to distributions with unbounded support and removing normality assumption

    ROR-Îł drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.

    Get PDF
    The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor Îł (ROR-Îł) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-Îł drives AR expression in the tumors. ROR-Îł recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-Îł antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-Îł antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-Îł antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-Îł as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa

    Effects of unilateral eccentric versus concentric training of nonimmobilized arm during immobilization

    Get PDF
    Introduction The present study tested the hypothesis that eccentric training (ET) of nonimmobilized arm would attenuate negative effects of immobilization and provide greater protective effects against muscle damage induced by eccentric exercise after immobilization, when compared with concentric training (CT). Methods Sedentary young men were placed to ET, CT, or control group (n = 12 per group), and their nondominant arms were immobilized for 3 wk. During the immobilization period, the ET and CT groups performed five sets of six dumbbell curl eccentric-only and concentric-only contractions, respectively, at 20%-80% of maximal voluntary isometric contraction (MVCiso) strength over six sessions. MVCiso torque, root-mean square (RMS) of electromyographic activity during MVCiso, and bicep brachii muscle cross-sectional area (CSA) were measured before and after immobilization for both arms. All participants performed 30 eccentric contractions of the elbow flexors (30EC) by the immobilized arm after the cast was removed. Several indirect muscle damage markers were measured before, immediately after, and for 5 d after 30EC. Results ET increased MVCiso (17% ± 7%), RMS (24% ± 8%), and CSA (9% ± 2%) greater (P \u3c 0.05) than CT (6% ± 4%, 9% ± 4%, 3% ± 2%) for the trained arm. The control group showed decreases in MVCiso (-17% ± 2%), RMS (-26% ± 6%), and CSA (-12% ± 3%) for the immobilized arm, but these changes were attenuated greater (P \u3c 0.05) by ET (3% ± 3%, -0.1% ± 2%, 0.1% ± 0.3%) than CT (-4% ± 2%, -4% ± 2%, -1.3% ± 0.4%). Changes in all muscle damage markers after 30EC were smaller (P \u3c 0.05) for the ET and CT than the control group, and ET than the CT group (e.g., peak plasma creatine kinase activity: ET, 860 ± 688 IU L-1; CT, 2390 ± 1104 IU L-1; control, 7819 ± 4011 IU L-1). Conclusions These results showed that ET of the nonimmobilized arm was effective for eliminating the negative effects of immobilization and attenuating eccentric exercise-induced muscle damage after immobilization

    Transcriptomes of the Anther Sporophyte: Availability and Uses

    Get PDF
    An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics

    HuR cytoplasmic expression is associated with increased cyclin A expression and poor outcome with upper urinary tract urothelial carcinoma

    Get PDF
    BACKGROUND: HuR is an RNA-binding protein that post-transcriptionally modulates the expressions of various target genes implicated in carcinogenesis, such as CCNA2 encoding cyclin A. No prior study attempted to evaluate the significance of HuR expression in a large cohort with upper urinary tract urothelial carcinomas (UTUCs). METHODS: In total, 340 cases of primary localized UTUC without previous or concordant bladder carcinoma were selected. All of these patients received ureterectomy or radical nephroureterectomy with curative intents. Pathological slides were reviewed, and clinical findings were collected. Immunostaining for HuR and cyclin A was performed and evaluated by using H-score. The results of cytoplasmic HuR and nuclear cyclin A expressions were correlated with disease-specific survival (DSS), metastasis-free survival (MeFS), urinary bladder recurrence-free survival (UBRFS), and various clinicopathological factors. RESULTS: HuR cytoplasmic expression was significantly related to the pT status, lymph node metastasis, a higher histological grade, the pattern of invasion, vascular and perineurial invasion, and cyclin A expression (p = 0.005). Importantly, HuR cytoplasmic expression was strongly associated with a worse DSS (p < 0.0001), MeFS (p < 0.0001), and UBRFS (p = 0.0370) in the univariate analysis, and the first two results remained independently predictive of adverse outcomes (p = 0.038, relative risk [RR] = 1.996 for DSS; p = 0.027, RR = 1.880 for MeFS). Cyclin A nuclear expression was associated with a poor DSS (p = 0.0035) and MeFS (p = 0.0015) in the univariate analysis but was not prognosticatory in the multivariate analyses. High-risk patients (pT3 or pT4 with/without nodal metastasis) with high HuR cytoplasmic expression had better DSS if adjuvant chemotherapy was performed (p = 0.015). CONCLUSIONS: HuR cytoplasmic expression was correlated with adverse phenotypes and cyclin A overexpression and also independently predictive of worse DSS and MeFS, suggesting its roles in tumorigenesis or carcinogenesis and potentiality as a prognostic marker of UTUC. High HuR cytoplasmic expression might identify patients more likely to be beneficial for adjuvant chemotherapy

    AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    Get PDF
    The Hedgehog (Hh) pathway regulates cell differen- tiation and proliferation during development by controlling the Gli transcription factors. Cell fate de- cisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP- activated protein kinase (AMPK) is an important sensor of energy stores and controls protein synthe- sis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhib- iting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcrip- tional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency
    • 

    corecore