1,754 research outputs found
Delineation of a unique protein-protein interaction site on the surface of the estrogen receptor
Recent studies have identified a series of estrogen receptor (ER)interacting peptides that recognize sites that are distinct from the classic coregulator recruitment (AF2) region. Here, we report the structural and functional characterization of an ER alpha-specific peptide that binds to the liganded receptor in an AF2-independent manner. The 2-angstrom crystal structure of the ER/peptide complex reveals a binding site that is centered on a shallow depression on the beta-hairpin face of the ligand-binding domain. The peptide binds in an unusual extended conformation and makes multiple contacts with the ligand-binding domain. The location and architecture of the binding site provides an insight into the peptide's ER subtype specificity and ligand interaction preferences. In vivo, an engineered coactivator containing the peptide motif is able to strongly enhance the transcriptional activity of liganded ER alpha, particularly in the presence of 4-hydroxytamoxifen. Furthermore, disruption of this binding surface alters ER's response to the coregulator TIF2. Together, these results indicate that this previously unknown interaction site represents a bona fide control surface involved in regulating receptor activity
Upper bounds for number of removed edges in the Erased Configuration Model
Models for generating simple graphs are important in the study of real-world
complex networks. A well established example of such a model is the erased
configuration model, where each node receives a number of half-edges that are
connected to half-edges of other nodes at random, and then self-loops are
removed and multiple edges are concatenated to make the graph simple. Although
asymptotic results for many properties of this model, such as the limiting
degree distribution, are known, the exact speed of convergence in terms of the
graph sizes remains an open question. We provide a first answer by analyzing
the size dependence of the average number of removed edges in the erased
configuration model. By combining known upper bounds with a Tauberian Theorem
we obtain upper bounds for the number of removed edges, in terms of the size of
the graph. Remarkably, when the degree distribution follows a power-law, we
observe three scaling regimes, depending on the power law exponent. Our results
provide a strong theoretical basis for evaluating finite-size effects in
networks
Proton gradient formation in early endosomes from proximal tubules
AbstractHeavy endosomes were isolated from proximal tubules using a combination of magnesium precipitation and wheat-germ agglutinin negative selection techniques. Two small GTPases (Rab4 and Rab5) known to be specifically present in early endosomes were identified in our preparations. Endosomal acidification was followed fluorimetrically using acridine orange. In presence of chloride ions and ATP, the formation of a proton gradient (ΔpH) was observed. This process is due to the activity of an electrogenic V-type ATPase present in the endosomal membrane since specific inhibitors bafilomycin and folimycin effectively prevented or eliminated endosomal acidification. In presence of chloride ions (Km = 30 mM) the formation of the proton gradient was optimal. Inhibitors of chloride channel activity such as DIDS and NPPB reduced acidification. The presence of sodium ions stimulated the dissipation of the proton gradient. This effect of sodium was abolished by amiloride derivative (MIA) but only when loaded into endosomes, indicating the presence of a physiologically oriented Na+/H+-exchanger in the endosomal membrane. Monensin restored the gradient dissipation. Thus three proteins (V-type ATPase, Cl−-channel, Na+/H+-exchanger) present in early endosomas isolated from proximal tubules may regulate the formation, maintenance and dissipation of the proton gradient
Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and
NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a
quiescent state since at least early 2015, reactivated between 2017 March 19
and April 5. The radio flux density, while variable, is approximately 100x
larger than during its dormant state. The X-ray flux one month after
reactivation was at least 800x larger than during quiescence, and has been
decaying exponentially on a 111+/-19 day timescale. This high-flux state,
together with a radio-derived rotational ephemeris, enabled for the first time
the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV
pulsed fraction is comparable to the smallest observed for magnetars. The
overall pulsar geometry inferred from polarized radio emission appears to be
broadly consistent with that determined 6-8 years earlier. However, rotating
vector model fits suggest that we are now seeing radio emission from a
different location in the magnetosphere than previously. This indicates a novel
way in which radio emission from magnetars can differ from that of ordinary
pulsars. The torque on the neutron star is varying rapidly and unsteadily, as
is common for magnetars following outburst, having changed by a factor of 7
within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure
The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification
Editorial Preface to Special Issue:Exploring the impact of Andean uplift and climate on life evolution and landscape modification: From Amazonia to Patagonia
Editorial Preface to Special Issue:Exploring the impact of Andean uplift and climate on life evolution and landscape modification: From Amazonia to Patagonia
- …
