688 research outputs found

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    Can slow roll inflation induce relevant helical magnetic fields?

    Full text link
    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)∝kB^2(k) \propto k, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.Comment: 33 pages 6 figures; v4 to match the accepted version to appear in JCA

    Imperfect Dark Energy from Kinetic Gravity Braiding

    Full text link
    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.Comment: 41 pages, 7 figures. References and some clarifying language added. This version was accepted for publication in JCA

    Zero-point quantum fluctuations in cosmology

    Full text link
    We re-examine the classic problem of the renormalization of zero-point quantum fluctuations in a Friedmann-Robertson-Walker background. We discuss a number of issues that arise when regularizing the theory with a momentum-space cutoff, and show explicitly how introducing non-covariant counter-terms allows to obtain covariant results for the renormalized vacuum energy-momentum tensor. We clarify some confusion in the literature concerning the equation of state of vacuum fluctuations. Further, we point out that the general structure of the effective action becomes richer if the theory contains a scalar field phi with mass m smaller than the Hubble parameter H(t). Such an ultra-light particle cannot be integrated out completely to get the effective action. Apart from the volume term and the Einstein-Hilbert term, that are reabsorbed into renormalizations of the cosmological constant and Newton's constant, the effective action in general also has a term proportional to F(phi)R, for some function F(phi). As a result, vacuum fluctuations of ultra-light scalar fields naturally lead to models where the dark energy density has the form rho_{DE}(t)=rho_X(t)+rho_Z(t), where rho_X is the component that accelerates the Hubble expansion at late times and rho_Z(t) is an extra contribution proportional to H^2(t). We perform a detailed comparison of such models with CMB, SNIa and BAO data.Comment: 23 pages, 9 figures. v3: refs added. To appear in Phys. Rev.

    Mechanical evaluation of a tissue-engineered zone of calcification in a bone-hydrogel osteochondral construct

    Get PDF
    The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification at the bone-hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a tissue-engineered zone of calcification. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. .Experimental results showed that the shear strength at the bone-hydrogel interface increased by 100% with the tissue-engineered zone of calcification. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone-hydrogel interface was reduced with the tissue-engineered zone of calcification. We conclude that a tissue-engineered zone of calcification in osteochondral constructs can provide two improvements. First, it increases the strength of the bone-hydrogel interface, and second, it reduces the stress at this interface

    Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity

    Full text link
    We investigate the future evolution of the dark energy universe in modified gravities including F(R)F(R) gravity, string-inspired scalar-Gauss-Bonnet and modified Gauss-Bonnet ones, and ideal fluid with the inhomogeneous equation of state (EoS). Modified Friedmann-Robertson-Walker (FRW) dynamics for all these theories may be presented in universal form by using the effective ideal fluid with an inhomogeneous EoS without specifying its explicit form. We construct several examples of the modified gravity which produces accelerating cosmologies ending at the finite-time future singularity of all four known types by applying the reconstruction program. Some scenarios to resolve the finite-time future singularity are presented. Among these scenarios, the most natural one is related with additional modification of the gravitational action in the early universe. In addition, late-time cosmology in the non-minimal Maxwell-Einstein theory is considered. We investigate the forms of the non-minimal gravitational coupling which generates the finite-time future singularities and the general conditions for this coupling in order that the finite-time future singularities cannot emerge. Furthermore, it is shown that the non-minimal gravitational coupling can remove the finite-time future singularities or make the singularity stronger (or weaker) in modified gravity.Comment: 25 pages, no figure, title changed, accepted in JCA

    From molecules to particles in silane plasmas

    Full text link
    • 

    corecore