3,171 research outputs found

    Search for magnetic monopoles using proportional counters filled with helium gas

    Get PDF
    Slow magnetic monopoles in cosmic rays have been searched at sea level with the detector which consists of seven layers of proportional counters filled with a mixture of He + 20% CH4. The velocities and the energy losses of the incident particles are measured. The upper limit of flux for the monopoles in the velocity range of 1 x 0.001 Beta 4 x 0.001 is 2.78 x 10 to the minus 12th power square centimeters sr sec of 90% confidence level

    Correlation of high energy muons with primary composition in extensive air shower

    Get PDF
    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed

    Proportional drift tubes for large area muon detectors

    Get PDF
    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire

    Sp1 elements in SULT2B1b promoter and 5′-untranslated region of mRNA: Sp1/Sp2 induction and augmentation by histone deacetylase inhibition

    Get PDF
    AbstractThe steroid/sterol sulfotransferase gene (SULT2B1) encodes for two isozymes of which one (SULT2B1b) sulfonates cholesterol and is selectively expressed in skin. The human SULT2B1 gene contains neither a TATAAA nor a CCAAT motif upstream of the coding region for SULT2B1b; however, this area is GC-rich. Of five Sp1 elements identified two had regulatory activity utilizing immortalized human keratinocytes: one element is located above the ostensible transcription initiation site, whereas the other is located within the 5′-untranslated region of the SULT2B1b mRNA. Sp1 and Sp2 transcription factors identified by supershift analyses induced reporter gene activity, an effect markedly augmented by histone deacetylase inhibition

    Molybdenum sputtering film characterization for high gradient accelerating structures

    Full text link
    Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R&D regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also present a three cells standing wave section coated by a molybdenum layer ∼\sim 500 nm thick designed to improve the performance of X-Band accelerating systems.Comment: manuscript has been submitted and accepted by Chinese Physics C (2012

    Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (SIRM)

    Get PDF
    Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions

    Preparation of atomically clean and flat Si(100) surfaces by low-energy ion sputtering and low-temperature annealing

    Full text link
    Si(100) surfaces were prepared by wet-chemical etching followed by 0.3-1.5keV Ar ion sputtering, either at elevated or room temperature. After a brief anneal under ultrahigh vacuum conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(100) surface. However, subsequent 300eV Ar ion sputtering at room temperature followed by a 973K anneal yields atomically clean and flat Si(100) surfaces suitable for nanoscale device fabrication.Comment: 13 pages, 3 figures, to be published in Applied Surface Scienc

    A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stable isotope tracing is a powerful technique for following the fate of individual atoms through metabolic pathways. Measuring isotopic enrichment in metabolites provides quantitative insights into the biosynthetic network and enables flux analysis as a function of external perturbations. NMR and mass spectrometry are the techniques of choice for global profiling of stable isotope labeling patterns in cellular metabolites. However, meaningful biochemical interpretation of the labeling data requires both quantitative analysis and complex modeling. Here, we demonstrate a novel approach that involved acquiring and modeling the timecourses of <sup>13</sup>C isotopologue data for UDP-<it>N</it>-acetyl-<smcaps>D</smcaps>-glucosamine (UDP-GlcNAc) synthesized from [U-<sup>13</sup>C]-glucose in human prostate cancer LnCaP-LN3 cells. UDP-GlcNAc is an activated building block for protein glycosylation, which is an important regulatory mechanism in the development of many prominent human diseases including cancer and diabetes.</p> <p>Results</p> <p>We utilized a stable isotope resolved metabolomics (SIRM) approach to determine the timecourse of <sup>13</sup>C incorporation from [U-<sup>13</sup>C]-glucose into UDP-GlcNAc in LnCaP-LN3 cells. <sup>13</sup>C Positional isotopomers and isotopologues of UDP-GlcNAc were determined by high resolution NMR and Fourier transform-ion cyclotron resonance-mass spectrometry. A novel simulated annealing/genetic algorithm, called 'Genetic Algorithm for Isotopologues in Metabolic Systems' (GAIMS) was developed to find the optimal solutions to a set of simultaneous equations that represent the isotopologue compositions, which is a mixture of isotopomer species. The best model was selected based on information theory. The output comprises the timecourse of the individual labeled species, which was deconvoluted into labeled metabolic units, namely glucose, ribose, acetyl and uracil. The performance of the algorithm was demonstrated by validating the computed fractional <sup>13</sup>C enrichment in these subunits against experimental data. The reproducibility and robustness of the deconvolution were verified by replicate experiments, extensive statistical analyses, and cross-validation against NMR data.</p> <p>Conclusions</p> <p>This computational approach revealed the relative fluxes through the different biosynthetic pathways of UDP-GlcNAc, which comprises simultaneous sequential and parallel reactions, providing new insight into the regulation of UDP-GlcNAc levels and <it>O</it>-linked protein glycosylation. This is the first such analysis of UDP-GlcNAc dynamics, and the approach is generally applicable to other complex metabolites comprising distinct metabolic subunits, where sufficient numbers of isotopologues can be unambiguously resolved and accurately measured.</p

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
    • …
    corecore