236 research outputs found

    Hadron-Hadron Interactions from Nf=2+1+1N_f=2+1+1 Lattice QCD: isospin-1 KKKK scattering length

    Full text link
    We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2+1+1N_f=2+1+1 flavour gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230230 to 450 MeV450\,\textrm{MeV} at three values of the lattice spacing. The elastic scattering length a0I=1a_0^{I=1} is calculated at several values of the bare strange and light quark masses. We find MKa0=−0.385(16)stat(−12+0)ms(−5+0)ZP(4)rfM_K a_0 = -0.385(16)_{\textrm{stat}} (^{+0}_{-12})_{m_s}(^{+0}_{-5})_{Z_P}(4)_{r_f} as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=−0.154(6)stat(−5+0)ms(−2+0)ZP(2)rf fma_0 = -0.154(6)_{\textrm{stat}}(^{+0}_{-5})_{m_s} (^{+0}_{-2})_{Z_P}(2)_{r_f}\,\textrm{fm}.Comment: 28 pages, 18 tables, 14 figure

    Hadron-Hadron Interactions from Nf=2+1+1N_f=2+1+1 Lattice QCD: isospin-2 ππ\pi\pi scattering length

    Full text link
    We present results for the I=2I=2 ππ\pi\pi scattering length using Nf=2+1+1N_f=2+1+1 twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain Mπa0=−0.0442(2)stat(−0+4)sysM_\pi a_0=-0.0442(2)_\mathrm{stat}(^{+4}_{-0})_\mathrm{sys}.Comment: Edited for typos, overhauled figures, more detailed comparison to existing lattice result

    Isospin-0 ππ\pi\pi s-wave scattering length from twisted mass lattice QCD

    Full text link
    We present results for the isospin-0 ππ\pi\pi s-wave scattering length calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge configurations. We use three Nf=2N_f = 2 ensembles with unitary (valence) pion mass at its physical value (250∼\simMeV), at 240∼\simMeV (320∼\simMeV) and at 330∼\simMeV (400∼\simMeV), respectively. By using the stochastic Laplacian Heaviside quark smearing method, all quark propagation diagrams contributing to the isospin-0 ππ\pi\pi correlation function are computed with sufficient precision. The chiral extrapolation is performed to obtain the scattering length at the physical pion mass. Our result Mπa0I=0=0.198(9)(6)M_\pi a^\mathrm{I=0}_0 = 0.198(9)(6) agrees reasonably well with various experimental measurements and theoretical predictions. Since we only use one lattice spacing, certain systematics uncertainties, especially those arising from unitary breaking, are not controlled in our result.Comment: 21 pages, 5 figures, 6 table

    A Systematic Search for Structure-Activity Relationships of Skin Contact Sensitizers: Methodology

    Get PDF
    A computerized resource for the systematic evaluation of the structure-activity relationships and other aspects of contact allergens is described. This resource consists of a data base of results of contact dermatitis tests and a structural classification scheme for contact allergens that is called a Structure-Activity (S/A) Tree. The data base now contains approximately 2200 test results extracted from the journal Contact Dermatitis (1975–1982) and is continually being expanded. The S/A Tree is being developed to provide an index to structure-activity relationships of contact allergens; 63 structural groups are currently indexed. Analyses of benzoquinones and gallic acid esters are presented as examples of the potential application of this resource to such problems as the identification of potential cross-reactants, appropriate test concentrations and vehicles, and the reliability of available test results

    First Physics Results at the Physical Pion Mass from Nf=2N_f = 2 Wilson Twisted Mass Fermions at Maximal Twist

    Full text link
    We present physics results from simulations of QCD using Nf=2N_f = 2 dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations were enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations without this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new action, we compute the masses and decay constants of pseudoscalar mesons involving the dynamical up and down as well as valence strange and charm quarks at one value of the lattice spacing, a≈0.09a \approx 0.09 fm. Further, we determine renormalized quark masses as well as their scale-independent ratios, in excellent agreement with other lattice determinations in the continuum limit. In the baryon sector, we show that the nucleon mass is compatible with its physical value and that the masses of the Δ\Delta baryons do not show any sign of isospin breaking. Finally, we compute the electron, muon and tau lepton anomalous magnetic moments and show the results to be consistent with extrapolations of older ETMC data to the continuum and physical pion mass limits. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.Comment: 45 pages, 15 figure

    The Euler-Maruyama approximation for the absorption time of the CEV diffusion

    Full text link
    A standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme

    Isospin-0 ππ scattering from twisted mass lattice QCD

    Get PDF
    We present results for the isospin-0 pipipipi s-wave scattering length calculated in twisted mass lattice QCD. We use three Nf=2N_f = 2 ensembles with unitary pion mass at its physical value, 240~MeV and 330~MeV respectively. We also use a large set of Nf=2+1+1N_f = 2 + 1 +1 ensembles with unitary pion masses varying in the range of 230~MeV - 510~MeV at three different values of the lattice spacing. A mixed action approach with the Osterwalder-Seiler action in the valence sector is adopted to circumvent the complications arising from isospin symmetry breaking of the twisted mass quark action. Due to the relatively large lattice artefacts in the Nf=2+1+1N_f = 2 + 1 +1 ensembles, we do not present the scattering lengths for these ensembles. Instead, taking the advantage of the many different pion masses of these ensembles, we qualitatively discuss the pion mass dependence of the scattering properties of this channel based on the results from the Nf=2+1+1N_f = 2 + 1 +1 ensembles. The scattering length is computed for the Nf=2N_f = 2 ensembles and the chiral extrapolation is performed. At the physical pion mass, our result MpiamathrmI=00=0.198(9)(6)M_pi a^mathrm{I=0}_0 = 0.198(9)(6) agrees reasonably well with various experimental measurements and theoretical predictions
    • …
    corecore