206 research outputs found

    High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system.

    Full text link

    Local effects of large food-falls on nematode diversity at an arctic deep-sea site: results from an <i>in situ</i> experiment at the deep-sea observatory HAUSGARTEN

    Get PDF
    To study the response of the smaller benthic biota to larger food-falls and their possible effects on the biodiversity at the deep seafloor, we deployed the halves of a sagittally bisected porpoise (1.3 m in length: each half approximately 18 kg) at 2500 m and 5400 m water depth at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN in the eastem Fram Strait. Five weeks after the porpoise deployment, sediments beneath the carcasses and at different distances (0, 20, 40 cm) from these artificial food-falls were sampled with push-corers handled by a Remotely Operated Vehicle. The samples provided empirical evidence for a quick response by sediment-inhabiting bacteria and metazoan meiofauna to the carcasses at both water depths. Compared to control sediments, the substantial pulse of organic matter also led to generally increased meiofauna/nematode densities around the artificial food-falls. The comparison of nematode communities in sediments affected by the carcasses with those in control sediments exhibited shifts in the structural composition and the associated trophic and functional diversity of the nematodes. Our results confirmed that the impact of large food-falls on the deep benthic community largely depend on environmental factors (water depth, alternative food sources) as well as the background species composition, i.e., the structure of the prevailing meiofauna/nematode assemblages and the composition of the necrophagous community present in the wider area

    Deep-sea benthic communities and oxygen fluxes in the Arctic Fram Strait controlled by sea-ice cover and water depth

    Get PDF
    Arctic Ocean surface sea-ice conditions are linked with the deep sea benthic oxygen fluxes via a cascade of interdependencies across ecosystem components such as primary production, food supply, activity of the benthic community, and their functions. Additionally, each ecosystem component is influenced by abiotic factors such as light availability, temperature, water depth, and grain size structure. In this study, we investigated the coupling between surface sea-ice conditions and deep-sea benthic remineralization processes through a cascade of interdependencies in the Fram Strait. We measured sea-ice concentrations, a variety of different sediment characteristics, benthic community parameters, and oxygen fluxes at 12 stations of the LTER HAUSGARTEN observatory, Fram Strait, at water depths of 275–2500&thinsp;m. Our investigations reveal that the Fram Strait is bisected into two long-lasting and stable regions: (i) a permanently and highly sea-ice-covered area and (ii) a seasonally and low sea-ice-covered area. Within the Fram Strait ecosystem, sea-ice concentration and water depth are two independent abiotic factors, controlling the deep-sea benthos. Sea-ice concentration correlated with the available food and water depth with the oxygen flux. In addition, both abiotic factors sea-ice concentration and water depth correlate with the macrofauna biomass. However, at water depths &gt;&thinsp;1500&thinsp;m the influence of the surface sea-ice cover is minimal with water depth becoming more dominant. Benthic remineralization across the Fram Strait on average is  ∼ 1&thinsp;mmol C&thinsp;m−2&thinsp;d−1. Our data indicate that the portion of newly produced carbon that is remineralized by the benthos is 5&thinsp;% in the seasonally low sea-ice-covered eastern part of Fram Strait but can be 14&thinsp;% in the permanently high sea-ice-covered western part of Fram Strait. Here, by comparing a permanently sea-ice-covered area with a seasonally sea-ice-covered area, we discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface primary production may lead to increasing benthic remineralization at water depths &lt;&thinsp;1500&thinsp;m.</p

    A zone melting device for the in situ observation of directional solidification using high-energy synchrotron x rays editors-pick

    Get PDF
    Directional solidification (DS) is an established manufacturing process to produce high-performance components from metallic materials with optimized properties. Materials for demanding high-temperature applications, for instance in the energy generation and aircraft engine technology, can only be successfully produced using methods such as directional solidification. It has been applied on an industrial scale for a considerable amount of time, but advancing this method beyond the current applications is still challenging and almost exclusively limited to post-process characterization of the developed microstructures. For a knowledge-based advancement and a contribution to material innovation, in situ studies of the DS process are crucial using realistic sample sizes to ensure scalability of the results to industrial sizes. Therefore, a specially designed Flexible Directional Solidification (FlexiDS) device was developed for use at the P07 High Energy Materials Science beamline at PETRA III (Deutsches Elektronen–Synchrotron, Hamburg, Germany). In general, the process conditions of the crucible-free, inductively heated FlexiDS device can be varied from 6 mm/h to 12 000 mm/h (vertical withdrawal rate) and from 0 rpm to 35 rpm (axial sample rotation). Moreover, different atmospheres such as Ar, N2, and vacuum can be used during operation. The device is designed for maximum operation temperatures of 2200 °C. This unique device allows in situ examination of the directional solidification process and subsequent solid-state reactions by x-ray diffraction in the transmission mode. Within this project, different structural intermetallic alloys with liquidus temperatures up to 2000 °C were studied in terms of liquid–solid regions, transformations, and decompositions, with varying process conditions

    The DSM-5 criteria, level of arousal and delirium diagnosis: Inclusiveness is safer

    Full text link
    © 2014 European Delirium Association et al.; licensee BioMed Central Ltd. Background: Delirium is a common and serious problem among acutely unwell persons. Alhough linked to higher rates of mortality, institutionalisation and dementia, it remains underdiagnosed. Careful consideration of its phenomenology is warranted to improve detection and therefore mitigate some of its clinical impact. The publication of the fifth edition of the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM-5) provides an opportunity to examine the constructs underlying delirium as a clinical entity.Discussion: Altered consciousness has been regarded as a core feature of delirium; the fact that consciousness itself should be physiologically disrupted due to acute illness attests to its clinical urgency. DSM-5 now operationalises 'consciousness' as 'changes in attention'. It should be recognised that attention relates to content of consciousness, but arousal corresponds to level of consciousness. Reduced arousal is also associated with adverse outcomes. Attention and arousal are hierarchically related; level of arousal must be sufficient before attention can be reasonably tested.Summary: Our conceptualisation of delirium must extend beyond what can be assessed through cognitive testing (attention) and accept that altered arousal is fundamental. Understanding the DSM-5 criteria explicitly in this way offers the most inclusive and clinically safe interpretation

    Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase Modulates Oscillations of Pancreatic Islet Metabolism

    Get PDF
    Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis

    Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics

    Get PDF
    Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11β-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the in vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1
    • …
    corecore