645 research outputs found

    On the matching of top-down knowledge with sensory input in the perception of ambiguous speech

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>How does the brain repair obliterated speech and cope with acoustically ambivalent situations? A widely discussed possibility is to use top-down information for solving the ambiguity problem. In the case of speech, this may lead to a match of bottom-up sensory input with lexical expectations resulting in resonant states which are reflected in the induced gamma-band activity (GBA).</p> <p>Methods</p> <p>In the present EEG study, we compared the subject's pre-attentive GBA responses to obliterated speech segments presented after a series of correct words. The words were a minimal pair in German and differed with respect to the degree of specificity of segmental phonological information.</p> <p>Results</p> <p>The induced GBA was larger when the expected lexical information was phonologically fully specified compared to the underspecified condition. Thus, the degree of specificity of phonological information in the mental lexicon correlates with the intensity of the matching process of bottom-up sensory input with lexical information.</p> <p>Conclusions</p> <p>These results together with those of a behavioural control experiment support the notion of multi-level mechanisms involved in the repair of deficient speech. The delineated alignment of pre-existing knowledge with sensory input is in accordance with recent ideas about the role of internal forward models in speech perception.</p

    A case study in hexahedral mesh generation: Simulation of the human mandible

    Get PDF
    We provide a case study for the generation of pure hexahedral meshes for the numerical simulation of physiological stress scenarios of the human mandible. Due to its complex and very detailed free-form geometry, the mandible model is very demanding. This test case is used as a running example to demonstrate the applicability of a combinatorial approach for the generation of hexahedral meshes by means of successive dual cycle eliminations, which has been proposed by the second author in previous work. We report on the progress and recent advances of the cycle elimination scheme. The given input data, a surface triangulation obtained from computed tomography data, requires a substantial mesh reduction and a suitable conversion into a quadrilateral surface mesh as a first step, for which we use mesh clustering and b-matching techniques. Several strategies for improved cycle elimination orders are proposed. They lead to a significant reduction in the mesh size and a better structural quality. Based on the resulting combinatorial meshes, gradient-based optimized smoothing with the condition number of the Jacobian matrix as objective together with mesh untangling techniques yielded embeddings of a satisfactory quality. To test our hexahedral meshes for the mandible model within an FEM simulation we used the scenario of a bite on a ‘hard nut.’ Our simulation results are in good agreement with observations from biomechanical experiments

    A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural hazard management

    No full text
    International audienceDecision-making for protection measures against natural hazards entails major complexities for final decision makers. The issue in question does not only implicate a variety of criteria that need to be considered but also scarce financial resources make the allocation decision a difficult task. Furthermore, these decisions appear to be multidisciplinary in nature. Stakeholders from experts over politicians and the public are among the affected parties in making and dealing with the consequences of such decisions. In order to capture the complexity that arises when incorporating the varieties of interests as well as impacts protection measures have on the environment, the economy and society, transparent and multidisciplinary decision support techniques are needed. This paper looks at how Cost Benefit Analysis (CBA), a tool already applied to decisions concerning protective measures, and Multi Criteria Analysis (MCA), even though new to the field as such but already successfully practiced in other environmental areas, perform according to the abovementioned criteria. A conceptual overview of the methodologies will be given along with a discussion of the respective strengths and weaknesses. Looking at past applications, this overview gives an analysis about the potential of socio economics in its contribution to natural hazard research

    The Properties of Red Blood Cells from Patients Heterozygous for HbS and HbC (HbSC Genotype)

    Get PDF
    Sickle cell disease (SCD) is one of the commonest severe inherited disorders, but specific treatments are lacking and the pathophysiology remains unclear. Affected individuals account for well over 250,000 births yearly, mostly in the Tropics, the USA, and the Caribbean, also in Northern Europe as well. Incidence in the UK amounts to around 12–15,000 individuals and is increasing, with approximately 300 SCD babies born each year as well as with arrival of new immigrants. About two thirds of SCD patients are homozygous HbSS individuals. Patients heterozygous for HbS and HbC (HbSC) constitute about a third of SCD cases, making this the second most common form of SCD, with approximately 80,000 births per year worldwide. Disease in these patients shows differences from that in homozygous HbSS individuals. Their red blood cells (RBCs), containing approximately equal amounts of HbS and HbC, are also likely to show differences in properties which may contribute to disease outcome. Nevertheless, little is known about the behaviour of RBCs from HbSC heterozygotes. This paper reviews what is known about SCD in HbSC individuals and will compare the properties of their RBCs with those from homozygous HbSS patients. Important areas of similarity and potential differences will be emphasised

    Effects of 5-hydroxymethyl-2-furfural on the volume and membrane permeability of red blood cells from patients with sickle cell disease.

    Get PDF
    The heterocyclic aldehyde 5-hydroxymethyl-2-furfural (5HMF) interacts allosterically with the abnormal form of haemoglobin (Hb), HbS, in red blood cells (RBCs) from patients with sickle cell disease (SCD), thereby increasing oxygen affinity and decreasing HbS polymerization and RBC sickling during hypoxia. We hypothesized that should 5HMF also inhibit the main cation pathways implicated in the dehydration of RBCs from SCD patients - the deoxygenation-induced cation pathway (Psickle), the Ca(2+)-activated K(+) channel (the Gardos channel) and the K(+)-Cl(-) cotransporter (KCC) - it would have a synergistic effect in protection against sickling, directly through interacting with HbS, and indirectly through maintaining hydration and reducing [HbS]. This study was therefore designed to investigate the effects of 5HMF on RBC volume and K(+) permeability in vitro. 5HMF markedly reduced the deoxygenation-induced dehydration of RBCs whether in response to maintained deoxygenation or to cyclical deoxygenation/re-oxygenation. 5HMF was found to inhibit Psickle, an effect which correlated with its effects on sickling. Deoxygenation-induced activation of the Gardos channel and exposure of phosphatidylserine were also inhibited, probably indirectly via reduced entry of Ca(2+) through the Psickle pathway. Effects of 5HMF on KCC were more modest with a slight inhibition in N-ethylmaleimide (NEM, 1 mm)-treated RBCs and stimulation in RBCs untreated with NEM. These findings support the hypothesis that 5HMF may also be beneficial through effects on RBC ion and water homeostasis.We thank Action Medical Research and the MRC for financial support. UMC receives a BBSRC studentship.This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2014.277681/abstract

    Disordered systems on various time scales: a-Si3B3N7 and homogeneous sintering

    Full text link
    Modeling of materials systems for long times commonly requires the use of separation of time scale methods. We discuss this general approach and present two example systems, a-Si3B3N7 and the generation of homogeneous sinters.Comment: 22 pages, 7 figure
    corecore