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A Case Study in Hexahedral Mesh Generation:
Simulation of the Human Mandible
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Abstract 1 Introduction and Background

We provide a case study for the generation of pure hexahea wide range of applications of numerical simulations
dral meshes for the numerical simulation of physiologicBy means of the finite element method (FEM) the gener-
stress scenarios of the human mandible. Due to its coation of hexahedral meshes is highly desirable. However,
plex and very detailed free-form geometry, the mandibiie spite of enormous research efforts, the robust genera-
model is very demanding. tion of such meshes with an acceptable quality is still a
This test case is used as a running example to demefallenge for complex domains.
strate the applicability of a combinatorial approach fa th Several promising approaches for hexahedral mesh gen-
generation of hexahedral meshes by means of succes8f@ion work as follows: Given a prescribed quadrilateral
dual cycle eliminations which has been proposed by tp@rface mesh they first build the combinatorial dual of the
second author in previous work. We report on the progr&@(ahedral mesh. This dual mesh is converted into the pri-
and recent advances of the cycle elimination scheme. Thal hexahedral mesh, and finally embedded and smoothed
given input data, a surface triangulation obtained frotfto the given domain. Two such approaches, the modified
computed tomography data, requires a substantial m¥¥fisker Weaving algorithm by Folwell and Mitchell [1],
reduction and a suitable conversion into a quadrilateff Well as a method developed by the second author [2],
surface mesh as a first step, for which we use mesh cligly on an iterative elimination of certain dual cycles in
tering andb-matching techniques. the surfgce mesh. An _int_uiti\{e interpretation of the latter
Several strategies for improved cycle elimination ordgféthod is that cycle eliminations correspond to complete
are proposed. They lead to a significant reduction in tAB€ets of hexahedra in the volume mesh.
mesh size and a better structural quality. Based on thd N€ Purpose of this paper is twofold: on the one hand,
resulting combinatorial meshes, gradient-based optini24¢ Want to report recent progress with our combinatorial
smoothing with the condition number of the Jacobian m@¥Cle elimination approach. On the other hand, we pro-
trix as objective together with mesh untangling techniqu¥§le @ case study of its application to the stress analysis
yielded embeddings of a satisfactory quality. of a human mandible model. The study comprises the full
To test our hexahedral meshes for the mandible mod&fSning process, starting from a given initial triangula-

within an FEM simulation we used the scenario of a bif?™ the conversion to a quadrilateral surface mesh, the
on a “hard nut” Our simulation results are in good agre exahedral mesh generation, and finally an illustrative tes

ment with observations from biomechanical experimentg.ase for the .analy5|sf runon th_e created hexghedral mesh.
S _ To get an impression of the input complexity, see Fig. 1
Keywords. Cycle elimination scheme, FEM simufor the mandible model given as a triangulation with
lation, hexahedral mesh generation, human mandikdg432 triangles.
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such a way that the refined surface mesh is a submesh of
the coarser one, simply by subdivision of each quadrilat-
eral into four new ones. By that, we can specify compara-
ble boundary conditions in the FEM simulation.

1.2 Hexahedral Mesh Generation

We briefly review methods for hexahedral mesh genera-
tion starting with a quadrilateral surface mesh. This re-
striction is justified by several reasons, most importantly
by the fact that only such methods can guarantee mesh
compatibility between subdomains, either naturally in-
duced by different material or artificially created to sim-
plify the mesh decomposition of the remaining parts.
Figure 1: View on the given mandible model. For a more general overview, we refer to the recent sur-
vey articles of Schneiders [6] and Owen [7], for online
information and data bases on meshing literature see [8]
human mandible. Our part in a project with H.-F. Zeiland [9].
hofer and R. Sader from the department of Oral and Max-We distinguish between@mbinatorial phasé which
illofacial Surgery at the University of Technology Municty cell complex of hexahedra, a so-calledx complex
lies in the mathematical modeling, the simulation, and &s constructed, and thembedding phashich yields
a prerequisite, the generation of a hexahedral mesh. the final hexahedral mesh. The theoretical basis for
Current work points are the simulation of traumatologitie combinatorial phase has been laid by Thurston [10]
standard situations [3] and the validation of the modelirgd Mitchell [11]. They characterized independently the
by resimulation of standard movements like closing of twmbinatorial properties of quadrilateral surface meshes
mouth, adduction and retraction [4]. The long term gowalhich can be extended to hexahedral meshes. Namely,
is the development of a software tool allowing individugbr a domain which is topologically a ball and which
numerical simulation of the human jawbone. To giveig equipped with an all-quadrilateral surface mesh, there
few examples, the idea is to apply such a tool in a cliexists a combinatorial hexahedral mesh without further
ical setting as a planning aid for difficult operations, theoundary subdivision if and only if the number of quadri-
design of implants, the layout of prostheses for large bolagerals is even. Furthermore, Eppstein [12] used this ex-
deficiencies, and the optimization of new methods for dstence result and proved that a linear number of hexahe-
teosynthesis [5]. dra (in the number of quadrilaterals) are sufficient in such
As a consequence, this implies for the mesh generateases. These results, however, are not fully constructive
process that we need relatively coarse meshes to ensuné they do not tell how to derive a geometric embedding
that we can realize short computation times with a modf a combinatorial mesh with an acceptable quality.
erately sized hardware equipment. Our coarsest mesh fahdvancing front based methods likéastering[13, 14]
the mandible model consists of only 1300 quadrilateratsintain throughout the algorithm timeeshing frontthat
and 2252 hexahedra. This allows to run the FEM simulis-a set of quadrilateral faces which represent the boundary
tion on an ordinary workstation. Another justification foof the region(s) yet to be meshed. These heuristics select
coarse meshes lies in the fact that we have to face seviteahtively one or more quadrilaterals from the front, elta
sources of imprecision in the whole experiment, for esnew hexahedron to them, and update the front until the
ample, coming from assumptions about the modeling wélume is completely meshed.
the material or the load case. Hence, it makes no sense tGalvo & Idelsohn [15] recently presented rough ideas
ask for a very fine mesh which would prelude an accurag§/a recursive decomposition approach. They select a dual
which is already lost in other parts of the experiment. cycle to divide the combinatorial dual of the surface mesh
On the other hand, an appropriate degree of the coalisés two subgraphs. This “cut” induces an interior two-
ness has to be determined. Thus, the computation witlanifold which is remeshed simply by mapping or pro-
such extremely coarse meshes as we used requires ajeating one of the obtained subgraphs onto it. However,
idation of the simulation results with finer meshes. Asfeagments from previously used dual cycles are ignored in
first step in this direction, we refined our coarse meshtimis mapping. This splitting process is applied recursivel




For the mandible model, the maximal node degree of our
hexahedral mesh is eight.

1.4 Overview and Contribution

The first major problem we have been faced with in the
meshing process of the mandible model was the conver-
sion of the given input triangulation into a coarse quadri-
Figure 2: Example of a cycle elimination: The highlighteghteral mesh. In Section 2 we describe the steps taken to
dual cycle is removed. This corresponds to the eliminatiganerate such an initial quadrilateral mesh, caftestro

of a complete sheet (layer) of hexahedra. element mesim the following. The surface of each macro
element is represented asrallti-patchof the triangula-
tion such that no information about the initial geometry

until there are no_ more unu§ed du.al cycles. ) . islost. The given very complicated free-form surface and
Whisker weavingl6, 17] first builds the combinatorialiis rjangulation make a segmentation into nice clusters of

dual of a mesh and constructs the primal mesh and its Glﬁ%ingles forming the multi-patches very difficult.

bedding only afterwards. The key idea of our approach is to use an extremely
coarse quadrilateral surface mesh which has a perfect cy-
cle elimination scheme. A crucial property of a combi-
natorial,b-matching based mesh refinement algorithm de-
As mentioned above, the modified Whisker Weaving alggeribed in [18] is the following: Given a surface mesh with
rithm by Folwell & Mitchell [1], as well as a method pro-a perfect cycle elimination scheme, any mesh refinement
posed by the second author [2], rely on an iterative elifaroduced by our algorithm also has a perfect elimination
ination of certain dual cycles in the surface mesh. Moesder.
precisely, we regard the surface mesh as a planar graphhen, in Section 3, we report recent advances in the
and consider its graph-theoretical dual. Hence, for eagycle elimination approach. Experiments showed that a
primal edge of the surface mesh, there is a corresponddageful cycle selection is needed to reduce the size of the
dual edge, and for each quadrilateral we have two pairgefx complexes and to improve their structure. We explain
edges lying opposite to each other. A cy€lan this dual several new strategies which improve over previous meth-
graph is said to be eanonical dual cycléf for each edge ods:
e € C (corresponding to a primal edge of a quadrilateral
in the surface mesh) the unique opposite edge is also cork:
tained in the dual cycle. See Fig. 2 for an example of a
canonical dual cycle and the result after its elimination. 2. a splitting into two submeshes by insertion of an in-
The crucial difference in these two approaches is that ternal 2-manifold;
modified whisker weaving eliminates dual cycles withoutg
restrictions, whereas our approach requires canonicél dua
cycles with additional structural properties. Most impor-
tantly, all dual cycles should be free of self-intersecsion
and a feasible elimination requires the mesh to be simpleWhen we are dealing with mechanical parts there is
planar and three-connected graph after each eliminatioften a “natural” decomposition into convex parts along
An ordering of all but the last three dual cycles with thesgearly distinguishable sharp concave edges. In contrast,
properties is called perfect cycle elimination scheme  for the mandible model such a decomposition is not pos-
These restrictions on cycle eliminations, however, hasible.
one important advantage: Empirically, they are likely to This has also consequences for the geometric embed-
yield meshes with a better structure. One possible meastireg phase which we describe in Section 4. In the early
to compare the internal connectivity structure of a comtstage of the development of our code we used the barycen-
natorial mesh is the distribution of node degrees. Clearsic embedding algorithm (often referred to laaplacian
large node degrees are to be avoided. The optimal ned®oothing. However, for this simple to implement and
degree is that of a perfect grid, i.e. internal nodes shodiést algorithm it is well-known that it might fail to pro-
have six incident edges and eight hexahedra attached tduicevalid meshes (i.e., all elements are embedded inside

1.3 Cycle Elimination Schemes

a generalization of a cycle elimination to a multi-step
cycle elimination;

a changed hex complex construction which allows to
eliminate cycles which otherwise would imply an in-
ferior mesh quality.



the domain and are non-inverted) for a non-convex do

main. In addition, recent experiments with complicated
whisker weaving meshes [19] show that this can also hay. \ ‘\
pen with convex domains. Therefore, following the pio- S ‘

neering work of Freitag and Knupp [20, 21, 19] we in- {
corporated two additional embedding algorithms into oul
code. One algorithm is for local node position optimiza-
tion based on the squared condition number of the Jacs-

_b|an ma}rlces attach”ed to mesh nOdeS' The other alg_o_rltEI ure 3: Removal of extreme triangles by iterated edge
is used “to untangle” the mesh, i.e., to find node position

) ) . .. —contractions.
such that all Jacobian determinants are strictly positive.

For the node position optimization of an untangle
mesh, we apply a gradient based optimization routine wi
line search and thereby significantly increase the owt
all mesh quality. In contrast to reports by Freitag an
Knupp [20] about numerical difficulties with this approacl
for tetrahedral meshes, our implementation seemed
work in a robust way for our test instances.

In Section 5, we apply the created hexahedral mesh
an interesting test case, and thereby show that we hi
achieved a mesh quality which allows a successful num:
ical analysis. In this experiment, we simulated a bite ¢
a hard nut. The outcome agrees well with observatio
made in previous biomechanical experiments.

Finally, in Section 6, we summarize the main featur
of our approach and give directions for future work.

T‘—slgure 4: The clustering of one half of the mandible into
multi-patches.

2 From Compmed Tomography several orders of magnitude. Hence the next goal is a re-

Data Towards a Quadrilateral duction to only abouta few hundred multi-patches with
the side constraint that the patches should be reasonably

Surface Mesh well-shaped.

The starting point of our investigation is a surface trian- ) )
gulation of the mandible with more than 35000 triangle4:1 Mesh Clustering and Multi-Patches

This data basis originally stems from computed tomogrpgg simplification of surface triangulations (or more gen-
phy (CT) data from a tooth-less male. Iso-surfaces of iy of polygonal surface meshes) has been intensively
tissue density represented by the CT data are compulggljied, mostly in computer graphics with the purpose of
using the marching cubes method [22] with the help g{q; rendering, see the survey of Heckbert & Garland [23]
SIPFas. for an overview.

The given initial triangulation contained nuMerous geyeral methods have been developed which are specif-
poorly shaped triangles (with minimum interior angle lesg|ly designed for the use in finite element meshes [24,
than 5 degrees). To avoid numerical problems in the mulis 26). The most important clustering criteria in these
patching and to reduce the size of the triangulation we agsproaches are region size, region curvature change (flat-
plied iterative edge contractions as a first preprocessiiigss)  the preservation of sharp edges and corners, and
step. . . simple boundary shape. These criteria are conflicting so

Fig. 3 shows the typical effect of this method for a smafat clustering methods usually take a weighted combina-
detail. Although this method reduces the mesh size gk However, the given triangulation is so “wild” (the
ready significantly, the triangulation is still too large byirye” surface is smooth, whereas the triangulation pre-

fSIPFas (Simulated Interactive Plastic Facial Surgery)sefavare lUdes the existence Of_ Sh.arp edges) that it is not clear
package developed at TU Munich, chair of Applied Mathensatic whether we can get satisfying results from these methods.
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Figure 5: A detailed view on the multi-patches.

As long as this question is unsettled, we take a differesuich a mesh to the desired mesh density keeping the prop-
approach, involving the following steps: erty that all dual cycles are simple.
1. superimpose a very coarse but well structured qua r'-T.he rec.ent paper 18] desc_ribes in detail how this can be
' lateral surface mesh on the triangulation: %&hlevgq ina rqbust way: Th_ls method sets up and solves
’ an auxiliary weighted-matching problem defined on the
2. split all triangles which intersect with the boundar§ual of the surface mesh. The resultirgnatching solu-
of quadrilaterals; tion is carefully decomposed into cycles and paths which
can be realized and embedded as a quadrilateral mesh re-
3. define clusters as all triangles lying inside a quadfinement without self-intersections.

lateral; Fig. 6 shows an example of such a refinement for the

We partition the triangulation into clusters by colorind.nandIIOIe model.
This partitioning is induced by the equivalence relation
that two triangles belong to the same cluster if they shate .. .
an edge and are colored by the same color. Hence, ?rgi- ImprOVEd CyCIe Eliminations

formly colored sets of edge-connected triangles define a ] ) ] ] ]
cluster As mentioned in the Introduction, the order in which cy-

See Figs. 4 and 5 for our clustering of the mandibfdes are selected for elimination has a great impact on the

model. The structure of the macro element mesh used $%€ Of the resulting hexahedral mesh and of its quality.

the clustering was designed by hand. For the embeddiAdhis section, we describe two new strategies which are

of this mesh onto the surface triangulation, the followirfg€Signed to reduce the size of the meshes.

procedure can be used: first, fix the position of certain

macro element nodes on the surface. Given an appropr;@_ti Multi-Step Cycle Eliminations

coordinate system for the mandible model, one can choose

extreme points with respect to the coordinate axes. S®¢e generalize the concept of a feasible elimination of

ond, determine all other point positions by a variation ofa single dual cycle to a multi-step cycle elimination.

stable projection technique [27]. (See [2, 28] for a detailed description of cycle elimina-
tions.) A single cycle elimination on the surface graph

2.2 Quadrilateral Mesh Refinement without corresponds in the construction phase to the addition of a

Self-Intersecting Dual Cycles sheet of hexahedra enclosed on one side of the cycle, the

elimination sideof a cycle.

With the clustering of the previous section we have A k-step cycle eliminatiorselectsk pairwise node-

achieved an extremely coarse quadrilateral mesh withdigjoint, simple cycles, sag',Cs,...,C, for a simul-

self-intersecting dual cycles. The next step is to refit@neous elimination and determines an elimination side
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Figure 6: Theb-matching problem defined on the dual graph of the coarse-patith quadrangulation, the given
numbers attached to the edges arebtmeatching values and denote the number of dual cycles ogssich primal
edge (left), and the embedding without self-intersectimfithe b-matching decomposition into dual cycles (right).

for each of them. Denote b@; the enclosed quadrilat- \ e
erals of cycleC; on its elimination side, and lef) = 6’ ’g
Q1N Q>N ---NQr be the common intersection. For 4“9;?.-
i iminatioi i i)
afeasiblek-step cycle eliminatioit is required that . g,‘;,::ﬁ
Y695 22"
1. the graph of the remaining cycle configuration is sim- 4‘:%525{;@55"
ple, planar and three-connected; ‘%/é‘i" -
o
(X X2
2. the set of quadrilateradg is edge-connected; ,‘Iéf‘&:“ /’
RS
LSS g
3. if £ > 1, then the uniolf) UQ; contains more quadri- y 'Il?,&'
laterals thar@, foralli = 1,. .. k. /["’?
e,

The hex complex is constructed sheet by sheet in re- L==
versed order of the cycle elimination in such a way that the
new sheet is always placed onto the bounding surfaceté)
the so far constructed hex complex at the time it is added.
More precisely, we place a new hexahedron on top of each

quadrilateral contained in the gt Hence, we geta Iayersheet would lead to bad elements regardless which elim-

bound_ed by the selected cyc_Ies. In this sense, the "fi%tion side we would choose. Typically, this occurs in
sheetis arqzxt_erngl sheetSee F|g: 7 for an example Wher?egions of local mesh refinements, see Fig. 8 for an exam-
a3-step eI|m|na_t|on gan b_e a_ppll_ed. ple. For such cases, we now also allow the insertion of
Note that an iterative elimination of the same set of Cystarnal sheets By that we mean a sheet which has only
cles would lead to a larger hex complex (by the third cogg qyadrilaterals corresponding to the dual cycle in com-
dition on feas'b"'tY)- ~mon with the current surface (so strictly speaking, the new
As for the special case = 1 we can check feasibility gheet is only “almost internal”). Such a sheet is incident

ure 7: Example: Three-step-elimination (arrows point
he three selected dual cycles.

of ak-step cycle elimination in linear time for ary to all hexahedra lying directly below the enclosed quadri-
laterals on the elimination side. See Fig. 9 for an exam-
3.2 Insertion of Internal Sheets ple. For an internal sheet, we have the freedom to choose

the smaller side with respect to the number of enclosed
Suppose that a dual cycte fulfills the structural criteria quadrilaterals as the elimination side. This typicallydea
for a feasible elimination but the placement of an exterrtala remarkable reduction in the size of the hex complex.



Figure 9: Example: Insertion of internal sheets.

However, for this simple to implement and comparably
Figure 8: Local mesh refinement at the biting point (indfast algorithm it is well-known that it might fail to pro-
cated by the arrow). duce valid meshes (and, indeed, it fails for our hexahedral
mesh of the mandible).
Following the pioneering work of Freitag and
3.3 Decomposition into Subdomains Knupp [20, 19, 21] we incorporated two additional em-

. . . ing algorithms in r ne for mesh optimiza-
Practical experience shows that for achieving an acceltp:)?—dd g algorithms into our code, one for mesh optimiza

able mesh quality a dual cycle should only be eIiminate8n and two for untangling.
and used in the construction as an external sheet if one of .
its neighboring primal cycles consists only of sharp edgésl  Quality Measures

Hence, we are often faced with the problem that no dug, , \ertey of a hexahedron the Jacobian matrix is formed

cycle meets this elimination criterion. In such asituaon, ¢ ¢ 10vs For that, let: ¢ R® be the position of this

splitinto several subdomains is often very helpful. In CO0artex ande; € R? fori — 1.2.3 be the position of its

trasF to Calvo & Idelsohn [15], we split the doma!n alonfﬁree neighbors in some fixed order. Using edge vectors
aprimal cycle of the current surface mesh and insertan _~ = "\ b - — 1 9 3 the Jacobian matrix is then
- 13 - ) )

e . . . . '3
additional internal two-manifold bounded by this primal, _ [e1, €2, e5]. The determinant of the Jacobian matrix

cycle. is usually calledlacobian If the edge vectors are scaled to

In [18], it has been explained how to find a suitable Plinit length, we get thecaled Jacobiamwith values in the

mal cycle for such a split and has been shown how to m‘?ﬁrﬁge -1.0to 1.0. An element is said toibeertedif one

such an internal two-manifold subject to the constraint tha ..« 3, -obians is less or equal to zero. As the sign of a de-
no self-intersection will be introduced in one of the tWPerminant depends on the order of its column entries, the

induced components. latter definition is only useful for checking the quality of

We give an example for the mandible model where SUEH element if the order of its neighbors is carefully chosen

a_split has been performed. It yieldgd t,WO almogt equapéfr each node. However, a consistent and fixed ordering of
sized submeshes, the left part of which is shown in Fig.

X . . - Re nodes can easily be derived from the combinatorial hex

In this case, the internal surface consists of 28 quadnlatgomp'ex by a graph search from some hexahedron lying at

als. the bounding surface. Hence, in the following we will al-
ways assume that the numbering of the nodes is consistent

S R ; for all hexahedra.
4 Mesh Optlmlzatlon' Untanglmg As a matrix norm, we always use tikeobenius norm
and Smoothing defined agA| = (tr(AT A))'/2. Thecondition number

k(A) of Ais the quantitys(A) = |A||A~"|. For the eval-

After the generation of a combinatorial hex complex, wation of the mesh quality, we also use another hexahedral

careful geometric embedding is needed to get a vafilape measure, the so-called Oddy metric [29], which can

mesh. By avalid meshwe mean that all elements arde written in matrix form as

embedded inside the domain and are non-inverted. In the 1

early stage of the development of our code we used only a f(A) = det(A)_4/3(|ATA|2 — —|AY).

barycentric embedding algorithm (Laplacian smoothing). 3
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Figure 10: Hexahedral mesh for the mandible with 2252 elesngeft), and one part of it after a split (right).

4.2 Optimization Based on the Condition after each step. Therefore, we perform the validity test
Number only after a constant number of steps and at the end of
each node optimization phase. If we detect at such a point

Let us assume for the moment that we have a valid meghinvalidity, we backtrack to a valid stage. For that, we
which we want to optimize with respect to the sum @nly need to store the node position at the beginning of a

the squared condition numbers as the objective functighase or immediately after the last successful check.
This objective goes to infinity if some determinant ap-

proaches zero, but does not distinguish between inverted

and non-inverted elements. Therefore, the modified con-

dition numbers’ is defined to bes if the determinant is 4.3 Mesh Untangling

strictly positive and set to plus infinity, otherwise. Inipri

ciple, one would like to minimize:’ over all hexahedra The optimization procedure from the previous paragraphs

simultaneously; unfortunately, due to its size this globegquires a valid mesh as a starting point. Hence, we also

optimization problem is intractable. implemented an algorithm which tries to maximize the
This means that only iterative local node improvemer@nimum Jacobian of all the hexahedra attached to an in-

based on this objective function restricted to the neigterior node. To this end, we adapted in a straightforward

borhood of an interior node are possible, and this is twgy a local improvement procedure for tetrahedral meshes

approach usually taken. from Freitag and Knupp [20].

For the optimal node placement problem we computeAs mentioned above global optimization techniques are
a steepest descent direction and combine it with standardikely to work for very large meshes. However, in spite
line search techniques to find an appropriate step size. (bfur previous remarks we also experimented with a fairly
details, see Dennis and Schnabel [30], for example.) general, global non-linear optimization technique for fi-

As a side constraint, we have to maintain the validityite minimum-maximum problems. Namely, we used the
of the mesh. As a consequence, we need to check Bghenichnyi-Pironneau-Polak algorithm [31]. This algo-
Jacobians for all pairs of nodes and attached hexahedttam can be viewed as an extension of a gradient algo-
incident to edges for which we want to change the positigithm with an Armijo-type step-size rule. As a subrou-
of one endpoint, which we call\aalidity test Note that it tine, it uses an enhanced version of the Frank-Wolfe al-
does not suffice to check only the Jacobians attachedytoithm to compute the search direction. We refer to the
the node we want to move. book of Polak [31] for details of this method. This algo-

To implement these checks efficiently one has to préthm is much more involved, may lead to efficiency prob-
vide an iterator data structure giving access to the elesndeins for large meshes. However, for the moderate size of
to be checked in constant time per element. But even thear meshes for the mandible model, it worked empirically
these checks seem to be too expensive if they are execwesy well.



Figure 11: Part of the hexahedral mesh for the mandible.

4.4 Combined Embedding Algorithm

We use a combined embedding algorithm. To get a fast
initial embedding, we use the barycentring smoothing al-
gorithm. After the barycentring embedding a check is
needed that all hexahedra are embedded inside the pre
scribed surface mesh. Nodes failing this check are moved
into the domain. If the mesh is not valid after this ini-
tialization, we invoke an untangling phase. The number
of iterations over all nodes is controlled by a termination
criterion based on the maximum relative node movement
within an iteration. Of course, this phase is also stoppEigure 12: Arefinement of the hexahedral mesh in Fig. 10
immediately when the mesh becomes untangled. If théth 18674 hexahedra.

untangling phase terminates without finding a valid mesh,

this may have two reasons: either we are stuck in a local

minimum (if the local optimization procedure is used), ojglid mesh and an overall average of 0.83 for the scaled

if we are in a global minimum, the combinatorial mesh hggacobian, 4.2 for the condition number, and 3.5 for the
no valid embedding. In any case, we start afterwards a gt#tdy metric.

dient based optimization phase with respect to the squared
condition number to improve the quality. If the mesh is
still untangled, this is followed by a new invocation of the
mesh untangling procedure.

4.6 Ordering of the Hexahedra and Band-
4.5 Computational Results width

Table 1 shows the results of the embedding phases Withge— h ical li laeb din the FEM simul
spect to different quality measures (scaled Jacobian, ¢ AL the numericallinéar algebra used in the simuia-

dition number, and Oddy metric) for the mandible me jon the structure of the matrix assembled from the hexa-

with 2252 hexahedra. For the interpretation, recall that t ed-ral mesh_ls of cru0|al_ Importance. For exam.ple, 'F 'S
scaled Jacobian is to be maximized with an upper limit sirable to find an ordering of the hexahedra which mini-

1.0, whereas condition number (with minimum 3.0), ar{H'ieS b?ndW'fdth or relﬁ_ted plarar_?t?tetrs gf ?[Itlje m?t;[rlx. Duhe
the Oddy metric measure are to be minimized. 0 11s nature orourmeshing aigorithm to build up the mes

The initial barycentring embedding produces an inval|8yer .by layer, the created hex-complex corresppr)ds toan
mesh with 39 inverted elements, and rather extreme val é%e”ng of the hex_ahedra which is rather inefficient for
for the condition number and Oddy metric among the no e LR-decomposition.
inverted elements. The first untangling phase considerablynfortunately, the bandwidth optimization problem and
improves the mesh quality but still fails to yield a validts variants are NP-hard. For the mandible, however, the
mesh as is contains one remaining inverted hexahedrsimplest reordering strategy, namely a breadth first search
However, after a few optimization and untangling phasstarted from one boundary hexahedron at the left condyle,

we get rid of all degeneracies and finally end up withlad to a decisive improvement.



quality measure scaled Jacobian condition number Oddy metric #inverted
min | aver.| max | min | aver. max | min | aver. max | elements

barycentring embedding 0.001 | 0.817 | 0.999| 3.01| 4.46 | 1978.6| 0.009 | 4.453 | 14355.4 39
after (first) untangling | 0.048| 0.813| 0.999| 3.01 | 4.37 95.1| 0.009| 3.677 779.4
final optimization 0.087| 0.831| 0.999| 3.01| 4.23 20.7 | 0.006| 3.459 591.2

Table 1: Quality statistics for the embedding of the hexatledesh shown in Fig. 10 with 2252 elements.

5 Simulation: Bite on a Hard Nut 6 Summary and Future Work

We now present the results of an FEM simulation witye have presented a case study for the generation of hex-
dral meshes with a high quality allowing successful

our coarsest hexahedral mesh. As an illustrative test c i si X . X ; . .
we selected the situation of a lateral bite (on the righf™ Simulations in the field of biomechanics. As a first

hand side). Based on the biomechanical experimentsSEiP: the given triangulation of a complex free-form geom-

Moog [32], the boundary loads were situated (the coldflry had to be converted into a suitable quadrilateral sur-

in Fig. 14 show the placement of the masticatory mutace mesh. In absence of a robust clustering method, we

cles and the biting point in our FEM model). For saki9ok the approach to design a very coarse idealized macro

of a worst case test, a very *hard nut” is to be masticatéﬂ‘.amem mesh for a mandible model by hand and to super-

By that, we can assume approximately zero deformatibpPOSe it on the given triangulation to form multi-patches.
at the biting point. In the mathematical modeling this i'ghe creation of the idealized macro element mesh is done

equivalent with the assumption of homogeneous Dirich@f1y once for the restricted domain of mandible models.

boundary conditions. Bone tissue is modeled as homdlis is an acceptable solution in view of the goal of an in-

geneous and isotropic, a linear material law is used wifyidual simulation with many variants of mandible mod-
elasticity module of 11 GPa and Poisson number 0.28 65+ But certainly more research on mesh coarsening ap-
detailed discussion of the taken approach and its limi@ied to general free-from geometries for the purpose of

tions goes beyond the scope of this paper. The interesiégdrilateral meshing would be highly appreciated.

reader is referred to Kober et al. [5]. As soon as a coarse macro element mesh is available,
: . we can use our mesh refinement techniques basdd on
For the FEM simulation we used the non-commercial . : : . :
FEM software package FeliCs [33] matching algorithms to yield a quadrilateral mesh refine-
P 9 ment with any desired local mesh density (without self-
The ansatz described above allows the calculation of fagersecting dual cycles).
biting force out of the FEM results. The orientation of the g4, the combinatorial phase of the hexahedral mesh

force vector (see Fig. 14) and the order of magnitude @fneration, we presented new strategies for improved cy-
its absolute value (here: about 600 N) give some hifg, glimination schemes. These methods effectively re-

on the quality of the simulations. Here, both lie in thg,ce the size of the hexahedral meshes and improve the
realistic range. The same is true for the order of magRfctural quality of the meshes. In particular, we obsgérve

) > . . . quali _ _
tude of the deformatior(- 10~>m). Earlier studies have ihat most interior nodes have optimal degree six, and the
shown that von Mises equivalent stress is an appropriigyimal degree was only eight.

post-processing variable [5]. Fig. 13 shows the von MlsesGraclient based mesh smoothing turned out to work

equivalent stresses after the bite, with a maximum of abwé" At the current stage, we have concentrated our re-

9 MPa appearing directly at the area of the biting poms:[féarch concerning the embedding phase on finding the

Thehdefor_malt:'t_lonl(iogr:]lmeﬁ exaggerzlatted) of the_tmhanbdll%gst quality, neglecting speed considerations to a certain

IS shown In Fig. 14. The Shown results agree with o S%’régree. Future work must address the acceleration of the
vation from biomechanical experiments of Moog [32]. mesh embedding algorithms. Apart from further code
fine-tuning we see potential for improved efficiency in the

tFeliCs has been developed at the chair of Applied Mathesafid applicgtion of Va_riants C_'f quasi-Newton methOd.S and other
Munich. step-size rules in the line-search, as well as in more so-

10



MPa

Figure 13: Von Mises equivalent stresses occurring at adblbée on a hard nut.

Figure 14: Deformation of the mandible (100 times exaggetairder of magnitud&0 - 10~>m) occurring at a lateral
bite: the colors show the placement of the masticatory negsahd the biting point. The arrows indicate the assumed
muscle forces.
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phisticated node selection schemes for the order of locf] Kober, C., Bauer, H.-J., Zeilhofer, H.-F., Hoffmann,
node optimizations.

We have presented one illustrative test case for the ap-
plication of our hexahedral meshes to an FEM simulation
of the human mandible. As noted above, our simulation
results are in line with previous experiments. We have
also successfully applied our mesh generation methods to
a mandible model with a slightly different shape. Our cur-

rent goal is to extend the simulation experiment and t

study the effect of such a geometry change (a “sane” vs.
an “ill” mandible) on the stress distribution and deforma-
tion after a bite.

[7]
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