457 research outputs found

    What is the best way to diagnose menopause?

    Get PDF
    No single test for menopause is highly sensitive and specific. The best predictors that a woman will enter menopause within 4 years include age at least 50 years, amenorrhea for 3 to 11 months, and menstrual cycle irregularity within 12 months (strength of recommendation [SOR]: B; based on multiple prospective cohort studies). For diagnosing perimenopause, the level of follicle-stimulating hormone (FSH) is most useful for clinical situations in which the pretest probability, as based on history, is midrange (SOR: B, based on 1 systematic review and 2 cross-sectional studies)

    Researching the Research: Applying Machine Learning Techniques to Dissertation Classification

    Get PDF
    This research examines industry-based dissertation research in a doctoral computing program through the lens of machine learning algorithms to determine if natural language processing-based categorization on abstracts alone is adequate for classification. This research categorizes dissertation by both their abstracts and by their full-text using the GraphLab Create library from Apple’s Turi to identify if abstract analysis is an adequate measure of content categorization, which we found was not. We also compare the dissertation categorizations using IBM’s Watson Discovery deep machine learning tool. Our research provides perspectives on the practicality of the manual classification of technical documents; and, it provides insights into the: (1) categories of academic work created by experienced fulltime working professionals in a Computing doctoral program, (2) viability and performance of automated categorization of the abstract analysis against the fulltext dissertation analysis, and (3) natual language processing versus human manual text classification abstraction

    Applications of automatic differentiation in computational fluid dynamics

    Get PDF
    Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences

    Metabolomic and Transcriptomic Insights into How Cotton Fiber Transitions to Secondary Wall Synthesis, Represses Lignification, and Prolongs Elongation

    Get PDF
    The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.National Science Foundation grant 1025947Cellular and Molecular Biolog

    Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a Ξ”hsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Kmβ€Š=β€Š14.4Β±0.5 Β΅Mβˆ’1 sβˆ’1), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the Ξ”hsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 Γ… revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design

    The SNX-PX-BAR Family in Macropinocytosis: The Regulation of Macropinosome Formation by SNX-PX-BAR Proteins

    Get PDF
    Background: Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (> 0.2 mu m in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation
    • …
    corecore