1,176 research outputs found

    X-ray and optical observations of 1RXS J154814.5-452845: a new intermediate polar with soft X-ray emission

    Full text link
    We report the identification of the ROSAT all-sky survey source 1RXS J154814.5-452845as new intermediate polar and present the results from follow-up optical and X-ray observations. The source shows pulsations with a period of 693 s both in the optical and X-ray light curves and the detection of a synodic frequency strongly suggests that this is the rotation period of the white dwarf. Although the one day aliasing and the sparse optical data coverage does not allow to unambiguously identify the orbital period, the most likely values of 9.37 h and 6.72 h add 1RXS J154814.5-452845 to the intermediate polars with the longest orbital periods known. The optical spectrum displays features from the late type secondary and shows the presence of broad absorption lines at \Hbet and higher order Balmer lines which may be a signature of the white dwarf atmosphere, very similar to V 709 Cas. The average X-ray spectra as obtained by the EPIC instruments on board XMM-Newton show hard emission typical for this class of objects but also the presence of soft blackbody-like emission similar to that seen from soft intermediate polars and thought to arise from the white dwarf surface heated by the hard X-rays. The best fit model comprises thermal emission from multi-temperature plasma in collisional ionization equilibrium with a continuous temperature distribution up to a maximum of \sim60 keV, an Fe fluorescence line at 6.4 keV and with equivalent width of 260 eV and a blackbody component with kT of 86 eV. The hard X-ray emission is absorbed by matter covering 47% of the X-ray source with an equivalent hydrogen density of \sim\ohcm{23}. The remaining hard emission is absorbed by a much reduced column density of 1.5\hcm{21} as is the soft blackbody emission. (truncated)Comment: 14 pages, Latex, with 19 figures, accepted for publication in Astronomy and Astrophysic

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging

    An Improved Heat Kernel Expansion from Worldline Path Integrals

    Get PDF
    The one--loop effective action for the case of a massive scalar loop in the background of both a scalar potential and an abelian or non--abelian gauge field is written in a one--dimensional path integral representation. From this the inverse mass expansion is obtained by Wick contractions using a suitable Green function, which allows the computation of higher order coefficients. For the scalar case, explicit results are presented up to order O(T**8) in the proper time expansion. The relation to previous work is clarified.Comment: 13 pages, Plain TEX, no figure

    Once-ionized helium in superstrong magnetic fields

    Full text link
    It is generally believed that magnetic fields of some neutron stars, the so-called magnetars, are enormously strong, up to 10^{14} - 10^{15} G. Recent investigations have shown that the atmospheres of magnetars are possibly composed of helium. We calculate the structure and bound-bound radiative transitions of the He^+ ion in superstrong fields, including the effects caused by the coupling of the ion's internal degrees of freedom to its center-of-mass motion. We show that He^+ in superstrong magnetic fields can produce spectral lines with energies of up to about 3 keV, and it may be responsible for absorption features detected recently in the soft X-ray spectra of several radio-quiet isolated neutron stars. Quantization of the ion's motion across a magnetic field results in a fine structure of spectral lines, with a typical spacing of tens electron-volts in magnetar-scale fields. It also gives rise to ion cyclotron transitions, whose energies and oscillator strengths depend on the state of the bound ion.Comment: 12 pages, including 3 figures. Submitted to ApJ Letters (revised version

    Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    Full text link
    We report on the results of a \sim40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded 103610^{36} erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\sigma}), making it the 17th^{th} known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law (Γ=0.63\Gamma =0.63) plus a high-temperature black-body (kT \sim 2 keV) component. By analysing \sim12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disk-like component adding cooler light to the spectral energy distribution of the system.Comment: 11 pages, 11 figures, Accepted for publication in MNRA

    Identification of two new HMXBs in the LMC: a \sim2013 s pulsar and a probable SFXT

    Full text link
    We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period \sim2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power-law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties we classify both systems as SgXRBs: the 19th^{\rm th} confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    A Probable Optical Counterpart for the Isolated Neutron Star RX J1308.6+2127

    Full text link
    Using a very deep observation with HST/STIS, we have searched for an optical counterpart to the nearby radio-quiet isolated neutron star RX J1308.6+2127 (RBS 1223). We have identified a single object in the 90% Chandra error circle that we believe to be the optical counterpart. This object has m50CCD=28.56±0.13m_{50CCD}=28.56\pm0.13 mag, which translates approximately to an unabsorbed flux of Fλ=(1.7±0.3)e20F_{\lambda}=(1.7 \pm 0.3)e-20 ergs/s/cm^2/A at 5150 A or an X-ray-to-optical flux ratio of log(fX/fopt)=4.9log(f_X/f_opt)=4.9. This flux is a factor of 5\approx 5 above the extrapolation of the black-body fit to the X-ray spectrum, consistent with the optical spectra of other isolated neutron stars. Without color information we cannot conclude that this source is indeed the counterpart of RX J1308.6+2127. If not, then the counterpart must have m50CCD>29.6m_{50CCD} > 29.6 mag, corresponding to a flux that is barely consistent with the extrapolation of the black-body fit to the X-ray spectrum.Comment: 4 pages, 2 figures. Uses emulateapj5.sty, onecolfloat5.sty. Accepted by ApJ Letter

    Timing and spectral studies of the transient X-ray pulsar EXO 053109-6609.2 with ASCA and Beppo-SAX

    Full text link
    We report timing and spectral properties of the transient Be X-ray pulsar EXO 053109--6609.2 studied using observations made with the ASCA and BeppoSAX observatories. Though there must have been at least one spin-down episode of the pulsar since its discovery, the new pulse period measurements show a monotonic spin-up trend since 1996. The pulse profile is found to have marginal energy dependence. There is also evidence for strong luminosity dependence of the pulse profile, a single peaked profile at low luminosity that changes to a double peaked profile at high luminosity. This suggests a change in the accretion pattern at certain luminosity level. The X-ray spectrum is found to consist of a simple power-law with photon index in the range of 0.4--0.8. At high intensity level the spectrum also shows presence of weak iron emission line.Comment: 12 pages, 8 figures, Accepted for publication in Ap
    corecore