12,870 research outputs found
The vertical metal insulator semiconductor tunnel transistor: A proposed Fowler-Nordheim tunneling device
We propose a new field-effect transistor, the vertical metal insulator semiconductor tunnel transistor (VMISTT) which operates using gate modulation of the Fowler-Nordheim tunneling current through a metal insulator semiconductor (M-I-S) diode. The VMISTT has significant advantages over the metal-oxide-semiconductor field-effect transistor in device scaling. In order to allow room-temperature operation of the VMISTT, the tunnel oxide has to be optimized for the metal-to-insulator barrier height and the current-voltage characteristics. We have grown TiO2 layers as the tunnel insulator by oxidizing 7 and 10 nm thick Ti metal films vacuum-evaporated on silicon substrates, and characterized the films by current-voltage and capacitance-voltage techniques. The quality of the oxide films showed variations, depending on the oxidation temperatures in the range of 450-550 degrees C. Fowler-Nordheim tunneling was observed at low temperatures at bias voltage of 2 V and above and a barrier height of approximately 0.4 eV was calculated. Leakage currents present were due Schottky-barrier emission at room-temperature, and hopping at liquid nitrogen temperature
Power law tails of time correlations in a mesoscopic fluid model
In a quenched mesoscopic fluid, modelling transport processes at high
densities, we perform computer simulations of the single particle energy
autocorrelation function C_e(t), which is essentially a return probability.
This is done to test the predictions for power law tails, obtained from mode
coupling theory. We study both off and on-lattice systems in one- and
two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent
agreement with the results of computer simulations. We also account for finite
size effects, such that smaller systems are fully covered by the present theory
as well.Comment: 11 pages, 12 figure
Time-symmetric fluctuations in nonequilibrium systems
For nonequilibrium steady states, we identify observables whose fluctuations
satisfy a general symmetry and for which a new reciprocity relation can be
shown. Unlike the situation in recently discussed fluctuation theorems, these
observables are time-reversal symmetric. That is essential for exploiting the
fluctuation symmetry beyond linear response theory. Besides time-reversal, a
crucial role is played by the reversal of the driving fields, that further
resolves the space-time action. In particular, the time-symmetric part in the
space-time action determines second order effects of the nonequilibrium
driving.Comment: 4 page
Magneto-resistance in a lithography defined single constrained domain wall spin valve
We have measured domain wall magnetoresistance in a single lithographically constrained domain wall. An H-shaped Ni nano-bridge was fabricated by e-beam lithography with the two sides being single magnetic do- mains showing independent magnetic switching. The connection between the sides constraining the domain wall when the sides line up anti-parallel. The magneto-resistance curve clearly identifies the magnetic con- figurations that are expected from a spin valve-like structure. The value of the magneto-resistance at room temperature is around 0.1% or 0.4 . This value is shown to be in agreement with a theoretical formulation based on spin accumulation. Micromagnetic simulations show it is possible to reduce the size of the domain wall further by shortening the length of the bridge
Depletion isolation effect in Vertical MOSFETS during transition from partial to fully depleted operation
A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm
Metal-catalyst-free growth of carbon nanotubes and their application in field-effect transistors
The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is demonstrated. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode peaks and the absence of the disorder induced D-band, indicating single walled CNTs with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/dec
- …