4,148 research outputs found

    Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects

    Full text link
    The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility χ(T)\chi (T) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.Comment: 21 pages, latex including 5 eps figure

    Editorial: Crosstalk between intonation and lexical tones: Linguistic, cognitive and neuroscience perspectives

    Get PDF
    The interplay between categorical and continuous aspects of the speech signal remains central and yet controversial in the fields of phonetics and phonology. The division between phonological abstractions and phonetic variations has been particularly relevant to the unraveling of diverse communicative functions of pitch in the domain of prosody. Pitch influences vocal communication in two major but fundamentally different ways, and lexical and intonational tones exquisitely capture these functions. Lexical tone contrasts convey lexical meanings as well as derivational meanings at the word level and are grammatically encoded as discrete structures. Intonational tones, on the other hand, signal post-lexical meanings at the phrasal level and typically allow gradient pragmatic variations. Since categorical and gradient uses of pitch are ubiquitous and closely intertwined in their physiological and psychological processes, further research is warranted for a more detailed understanding of their structural and functional characterisations. This Research Topic addresses this matter from a wide range of perspectives, including first and second language acquisition, speech production and perception, structural and functional diversity, and working with distinct languages and experimental measures. In the following, we provide a short overview of the contributions submitted to this topi

    Invariants of Triangular Lie Algebras

    Full text link
    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], developed further in [J. Phys. A: Math. Theor., 2007, V.40, 113; math-ph/0606045], is used to determine the invariants. A conjecture of [J. Phys. A: Math. Gen., 2001, V.34, 9085], concerning the number of independent invariants and their form, is corroborated.Comment: LaTeX2e, 16 pages; misprints are corrected, some proofs are extende

    Can we build on social movement theories to develop and improve community‐based participatory research? a framework synthesis review

    Get PDF
    A long‐standing challenge in community‐based participatory research (CBPR) has been to anchor practice and evaluation in a relevant and comprehensive theoretical framework of community change. This study describes the development of a multidimensional conceptual framework that builds on social movement theories to identify key components of CBPR processes. Framework synthesis was used as a general literature search and analysis strategy. An initial conceptual framework was developed from the theoretical literature on social movement. A literature search performed to identify illustrative CBPR projects yielded 635 potentially relevant documents, from which eight projects (corresponding to 58 publications) were retained after record and full‐text screening. Framework synthesis was used to code and organize data from these projects, ultimately providing a refined framework. The final conceptual framework maps key concepts of CBPR mobilization processes, such as the pivotal role of the partnership; resources and opportunities as necessary components feeding the partnership's development; the importance of framing processes; and a tight alignment between the cause (partnership's goal), the collective action strategy, and the system changes targeted. The revised framework provides a context‐specific model to generate a new, innovative understanding of CBPR mobilization processes, drawing on existing theoretical foundations

    The brightest pure-H ultracool white dwarf

    Get PDF
    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (H_J=21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880+-90 K. This object is the brightest pure-H ultracool white dwarf (Teff<4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs.Comment: 5 pages, 7 figures, accepted for publication in A&A Letter

    Invariants of Lie Algebras with Fixed Structure of Nilradicals

    Full text link
    An algebraic algorithm is developed for computation of invariants ('generalized Casimir operators') of general Lie algebras over the real or complex number field. Its main tools are the Cartan's method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. Unlike the first application of the algorithm in [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], which deals with low-dimensional Lie algebras, here the effectiveness of the algorithm is demonstrated by its application to computation of invariants of solvable Lie algebras of general dimension n<n<\infty restricted only by a required structure of the nilradical. Specifically, invariants are calculated here for families of real/complex solvable Lie algebras. These families contain, with only a few exceptions, all the solvable Lie algebras of specific dimensions, for whom the invariants are found in the literature.Comment: LaTeX2e, 19 page

    Infinite families of superintegrable systems separable in subgroup coordinates

    Full text link
    A method is presented that makes it possible to embed a subgroup separable superintegrable system into an infinite family of systems that are integrable and exactly-solvable. It is shown that in two dimensional Euclidean or pseudo-Euclidean spaces the method also preserves superintegrability. Two infinite families of classical and quantum superintegrable systems are obtained in two-dimensional pseudo-Euclidean space whose classical trajectories and quantum eigenfunctions are investigated. In particular, the wave-functions are expressed in terms of Laguerre and generalized Bessel polynomials.Comment: 19 pages, 6 figure

    Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

    Full text link
    A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping t=0.35tt^{\prime }=-0.35t as a model for high-temperature superconductors. Magnetic properties are analyzed using the Two-Particle Self-Consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite % t^{\prime } and at t=0t^{\prime }=0 but for two totally different physical reasons. When t=0t^{\prime }=0, it is induced by antiferromagnetic correlations while at t=0.35tt^{\prime }=-0.35t it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with % T -matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the dd-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure

    Evidence from K2 for rapid rotation in the descendant of an intermediate-mass star

    Get PDF
    Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 solar-mass main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The Astrophysical Journal Letter
    corecore