15,750 research outputs found

    New Inhomogeneous Einstein Metrics on Sphere Bundles Over Einstein-Kahler Manifolds

    Full text link
    We construct new complete, compact, inhomogeneous Einstein metrics on S^{m+2} sphere bundles over 2n-dimensional Einstein-Kahler spaces K_{2n}, for all n \ge 1 and all m \ge 1. We also obtain complete, compact, inhomogeneous Einstein metrics on warped products of S^m with S^2 bundles over K_{2n}, for m>1. Additionally, we construct new complete, non-compact Ricci-flat metrics with topologies S^m times R^2 bundles over K_{2n} that generalise the higher-dimensional Taub-BOLT metrics, and with topologies S^m \times R^{2n+2} that generalise the higher-dimensional Taub-NUT metrics, again for m>1.Comment: Latex, 14 pages. Errors and typos corrected, and related references adde

    Evaporation of a Kerr black hole by emission of scalar and higher spin particles

    Get PDF
    We study the evolution of an evaporating rotating black hole, described by the Kerr metric, which is emitting either solely massless scalar particles or a mixture of massless scalar and nonzero spin particles. Allowing the hole to radiate scalar particles increases the mass loss rate and decreases the angular momentum loss rate relative to a black hole which is radiating nonzero spin particles. The presence of scalar radiation can cause the evaporating hole to asymptotically approach a state which is described by a nonzero value of a∗≡a/Ma_* \equiv a / M. This is contrary to the conventional view of black hole evaporation, wherein all black holes spin down more rapidly than they lose mass. A hole emitting solely scalar radiation will approach a final asymptotic state described by a∗≃0.555a_* \simeq 0.555. A black hole that is emitting scalar particles and a canonical set of nonzero spin particles (3 species of neutrinos, a single photon species, and a single graviton species) will asymptotically approach a nonzero value of a∗a_* only if there are at least 32 massless scalar fields. We also calculate the lifetime of a primordial black hole that formed with a value of the rotation parameter a∗a_{*}, the minimum initial mass of a primordial black hole that is seen today with a rotation parameter a∗a_{*}, and the entropy of a black hole that is emitting scalar or higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for variables, added journal referenc

    Intersubband magnetophonon resonances in quantum cascade structures

    Full text link
    We report on our magnetotransport measurements of GaAs/GaAlAs quantum cascade structures in a magnetic field of up to 62 T. We observe novel quantum oscillations in tunneling current that are periodic in reciprocal magnetic field. We explain these oscillations as intersubband magnetophonon resonance due to electron relaxation by emission of either single optical or acoustic phonons. Our work also provides a non-optical in situ measurement of intersubband separations in quantum cascade structures.Comment: 5 pages, 4 figure

    Rotating Black Holes in Higher Dimensions with a Cosmological Constant

    Get PDF
    We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S^{D-2} bundles over S^2, infinitely many for each odd D\ge 5. Applications to string theory and M-theory are indicated.Comment: 8 pages, Latex. Short version, with more compact notation, of hep-th/0404008. To appear in Phys. Rev. Let

    Opaque or transparent? A link between neutrino optical depths and the characteristic duration of short gamma-ray bursts

    Full text link
    Cosmological gamma ray bursts (GRBs) are thought to occur from violent hypercritical accretion onto stellar mass black holes, either following core collapse in massive stars or compact binary mergers. This dichotomy may be reflected in the two classes of bursts having different durations. Dynamical calculations of the evolution of these systems are essential if one is to establish characteristic, relevant timescales. We show here for the first time the result of dynamical simulations, lasting approximately one second, of post--merger accretion disks around black holes, using a realistic equation of state and considering neutrino emission processes. We find that the inclusion of neutrino optical depth effects produces important qualitative temporal and spatial transitions in the evolution and structure of the disk, which may directly reflect upon the duration and variability of short GRBs.Comment: Accepted for publication in ApJ Letter

    Understanding the magnetic resonance spectrum of nitrogen vacancy centers in an ensemble of randomly-oriented nanodiamonds

    Full text link
    Nanodiamonds containing nitrogen vacancy (NV-) centers show promise for a number of emerging applications including targeted in vivo imaging and generating nuclear spin hyperpolarization for enhanced NMR spectroscopy and imaging. Here, we develop a detailed understanding of the magnetic resonance behavior of NV- centers in an ensemble of nanodiamonds with random crystal orientations. Two-dimensional optically detected magnetic resonance spectroscopy reveals the distribution of energy levels, spin populations, and transition probabilities that give rise to a complex spectrum. We identify overtone transitions that are inherently insensitive to crystal orientation and give well-defined transition frequencies that access the entire nanodiamond ensemble. These transitions may be harnessed for high-resolution imaging and generation of nuclear spin hyperpolarization. The data are well described by numerical simulations from the zero- to high-field regimes, including the intermediate regime of maximum complexity. We evaluate the prospects of nanodiamond ensembles specifically for nuclear hyperpolarization and show that frequency-swept dynamic nuclear polarization may transfer a large amount of the NV- center's hyperpolarization to nuclear spins by sweeping over a small region of its spectrum.Comment: 6 pages, 5 figure

    New Einstein-Sasaki Spaces in Five and Higher Dimensions

    Get PDF
    We obtain infinite classes of new Einstein-Sasaki metrics on complete and non-singular manifolds. They arise, after Euclideanisation, from BPS limits of the rotating Kerr-de Sitter black hole metrics. The new Einstein-Sasaki spaces L^{p,q,r} in five dimensions have cohomogeneity 2, and U(1) x U(1) x U(1) isometry group. They are topologically S^2 x S^3. Their AdS/CFT duals will describe quiver theories on the four-dimensional boundary of AdS_5. We also obtain new Einstein-Sasaki spaces of cohomogeneity n in all odd dimensions D=2n+1 \ge 5, with U(1)^{n+1} isometry.Comment: Revtex, 4 pages, metric regularity conditions are further refine
    • 

    corecore