7,837 research outputs found

    Dependence of inner accretion disk stress on parameters: the Schwarzschild case

    Full text link
    We explore the parameter dependence of inner disk stress in black hole accretion by contrasting the results of a number of simulations, all employing 3-d general relativistic MHD in a Schwarzschild spacetime. Five of these simulations were performed with the intrinsically conservative code HARM3D, which allows careful regulation of the disk aspect ratio, H/R; our simulations span a range in H/R from 0.06 to 0.17. We contrast these simulations with two previously reported simulations in a Schwarzschild spacetime in order to investigate possible dependence of the inner disk stress on magnetic topology. In all cases, much care was devoted to technical issues: ensuring adequate resolution and azimuthal extent, and averaging only over those time-periods when the accretion flow is in approximate inflow equilibrium. We find that the time-averaged radial-dependence of fluid-frame electromagnetic stress is almost completely independent of both disk thickness and poloidal magnetic topology. It rises smoothly inward at all radii (exhibiting no feature associated with the ISCO) until just outside the event horizon, where the stress plummets to zero. Reynolds stress can also be significant near the ISCO and in the plunging region; the magnitude of this stress, however, depends on both disk thickness and magnetic topology. The two stresses combine to make the net angular momentum accreted per unit rest-mass 7-15% less than the angular momentum of the ISCO.Comment: Accepted for publication in ApJ, 52 pages, 38 figures, AASTEX. High-resolution versions can be found at the following links: http://ccrg.rit.edu/~scn/papers/schwarzstress.ps, http://ccrg.rit.edu/~scn/papers/schwarzstress.pd

    GRMHD prediction of coronal variability in accreting black holes

    Full text link
    On the basis of data from an energy-conserving 3D general relativistic MHD simulation, we predict the statistical character of variability in the coronal luminosity from accreting black holes. When the inner boundary of the corona is defined to be the electron scattering photosphere, its location depends only on the mass accretion rate in Eddington units (\dot{M}). Nearly independent of viewing angle and \dot{M}, the power spectrum over the range of frequencies from approximately the orbital frequency at the innermost stable circular orbit (ISCO) to ~100 times lower is well approximated by a power-law with index -2, crudely consistent with the observed power spectra of hard X-ray fluctuations in AGN and the hard states of Galactic binary black holes. The underlying physical driver for variability in the light curve is variations in the accretion rate caused by the chaotic character of MHD turbulence, but the power spectrum of the coronal light output is significantly steeper. Part of this contrast is due to the fact that the mass accretion rate can be significantly modulated by radial epicyclic motions that do not result in dissipation, and therefore do not drive luminosity fluctuations. The other part of this contrast is due to the inward decrease of the characteristic inflow time, which leads to decreasing radial coherence length with increasing fluctuation frequency.Comment: Accepted for publication in ApJ, 35 pages, 11 figures (8 color and 3 greyscale), AASTEX. High-resolution versions can be found at the following links: [PS] http://www.pha.jhu.edu/~scn/papers/grmhd_var.ps [PDF] http://www.pha.jhu.edu/~scn/papers/grmhd_var.pd

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages

    Radiative efficiency and thermal spectrum of accretion onto Schwarzschild black holes

    Full text link
    Recent general relativistic magneto-hydrodynamic (MHD) simulations of accretion onto black holes have shown that, contrary to the basic assumptions of the Novikov-Thorne model, there can be substantial magnetic stress throughout the plunging region. Additional dissipation and radiation can therefore be expected. We use data from a particularly well-resolved simulation of accretion onto a non-spinning black hole to compute both the radiative efficiency of such a flow and its spectrum if all emitted light is radiated with a thermal spectrum whose temperature matches the local effective temperature. This disk is geometrically thin enough (H/r ~= 0.06) that little heat is retained in the flow. In terms of light reaching infinity (i.e., after allowance for all relativistic effects and for photon capture by the black hole), we find that the radiative efficiency is at least ~=6-10% greater than predicted by the Novikov-Thorne model (complete radiation of all heat might yield another ~6%). We also find that the spectrum more closely resembles the Novikov-Thorne prediction for a/M ~= 0.2--0.3 than for the correct value, a/M=0. As a result, if the spin of a non-spinning black hole is inferred by model-fitting to a Novikov-Thorne model with known black hole mass, distance, and inclination, the inferred a/M is too large by ~= 0.2--0.3.Comment: Submitted to ApJ, 26 pages, 12 figures (some in color), AASTE

    The effect of build orientation and surface modification on mechanical properties of high speed sintered parts

    Get PDF
    High speed sintering is a novel additive manufacturing technology that uses inkjet printing and infra-red energy to selectively sinter polymeric powder. The research presented here investigates the effect of build orientation on dimensional accuracy, density, mechanical properties and surface roughness of high speed sintered parts. Tensile specimens were built through seven different angles between and including the XY (horizontal) and ZY (vertical) planes and analysed. The effect of the PUShâ„¢ process was also investigated across this range of build orientations. The results show that build orientation does infuence the properties of the parts. A number of mechanical properties showed a relationship with build orientation. Density was seen to decrease as the angle increased from XY towards ZY. This increase in angle was shown to increase surface roughness while ultimate tensile strength and elongation at break decreased. At all build orientations, the PUShâ„¢ process significantly reduces surface roughness, mildly increases part density and had a small effect on ultimate tensile strength whilst showing a small but consistent increase in elongation at break
    • …
    corecore