1,745 research outputs found

    Rapid Design of Gravity Assist Trajectories

    Get PDF
    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described

    The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    Get PDF
    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented

    Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    Get PDF
    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented

    TDRSS Onboard Navigation System (TONS) flight qualification experiment

    Get PDF
    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission

    Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data

    Get PDF
    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements

    Plasminogen activator inhibitor-1 is an aggregate response factor with pleiotropic effects on cell signaling in vascular disease and the tumor microenvironment

    Get PDF
    In hemostasis, the serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) functions to stabilize clots via inhibition of tissue plasminogen activator (tPA) with subsequent inhibition of fibrinolysis. In tissues, PAI-1 functions to inhibit extracellular matrix degradation via inhibition of urokinase plasminogen activator (uPA). Elevated levels of PAI-1 in the vasculature and in tissues have long been known to be associated with thrombosis and fibrosis, respectively. However, there is emerging evidence that PAI-1 may participate in the pathophysiology of a number of diseases such as atherosclerosis, restenosis, and cancer. In many of these disease states, the canonical view of PAI-1 as an inhibitor of tPA and uPA cannot fully account for a mechanism whereby PAI-1 contributes to the disease. In these cases, one must consider recent data, which indicates PAI-1 can directly promote pro-proliferative and anti-apoptotic signaling in a variety of cell types. Given the wide variety of inflammatory, hormonal, and metabolic signals that increase PAI-1 expression, it is important to consider mechanisms by which PAI-1 can directly participate in disease etiology

    Relative navigation for spacecraft formation flying

    Get PDF
    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration

    Emotional Distress and Compassionate Responses in Palliative Care Decision-Making Consultations

    Get PDF
    Background: Seriously ill hospitalized patients and their loved ones are frequently faced with complex treatment decisions laden with expressions of emotional distress during palliative care (PC) consultations. Little is known about these emotional expressions or the compassionate responses providers make and how common these are in PC decision-making conversations

    Activated protein C enhances cell motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular signal transduction

    Get PDF
    Activated protein C (APC), an anticoagulant serine protease, has been shown to have non-hemostatic functions related to inflammation, cell survival, and cell migration. In this study we investigate the mechanism by which APC promotes angiogenesis and breast cancer invasion using ex vivo and in vitro methods. When proteolytically active, APC promotes cell motility/invasion and tube formation of endothelial cells. Ex vivo aortic ring assays verify the role of APC in promoting angiogenesis, which was determined to be dependent on EGFR and MMP activation. Given the capacity of APC to promote angiogenesis and the importance of this process in cancer pathology, we investigated whether the mechanisms by which APC promotes angiogenesis can also promote motility and invasion in the MDA-MB-231 breast cancer cell line. Our results indicate that, extracellularly, APC engages EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells. APC activation of matrix metalloprotease (MMP) -2 and/or -9 is necessary but not sufficient to increase invasion, and APC does not utilize the endogenous plasminogen activation system to increase invasion. Intracellularly, APC activates ERK, Akt, and NFκB, but not the JNK pathway to promote MDA-MB-231 cell motility. Similar to the hemostatic protease thrombin, APC has the ability to enhance both endothelial cell motility/angiogenesis and breast cancer cell migration
    corecore