7 research outputs found

    Infrared Observations During the Secondary Eclipse of HD 209458b: I. 3.6-Micron Occultation Spectroscopy Using the VLT

    Get PDF
    We search for an infrared signature of the transiting extrasolar planet HD 209458b during secondary eclipse. Our method, which we call `occultation spectroscopy,' searches for the disappearance and reappearance of weak spectral features due to the exoplanet as it passes behind the star and later reappears. We argue that at the longest infrared wavelengths, this technique becomes preferable to conventional `transit spectroscopy'. We observed the system in the wing of the strong nu-3 band of methane near 3.6 microns during two secondary eclipses, using the VLT/ISAAC spectrometer at a spectral resolution of 3300. Our analysis, which utilizes a model template spectrum, achieves sufficient precision to expect detection of the spectral structure predicted by an irradiated, low-opacity (cloudless), low-albedo, thermochemical equilibrium model for the exoplanet atmosphere. However, our observations show no evidence for the presence of this spectrum from the exoplanet, with the statistical significance of the non-detection depending on the timing of the secondary eclipse, which depends on the assumed value for the orbital eccentricity. Our results reject certain specific models of the atmosphere of HD 209458b as inconsistent with our observations at the 3-sigma level, given assumptions about the stellar and planetary parameters.Comment: 26 pages, 8 figures Accepted to Astrophysical Journa

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Infrared radiation from an extrasolar planet

    Full text link
    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (~0.03), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 micron) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24 micron flux is 55 +/- 10 micro-Jy (1 sigma), with a brightness temperature of 1130 +/- 150 Kelvins, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1 sigma), which means that a dynamically significant orbital eccentricity is unlikely.Comment: to appear in Nature April 7, posted to Nature online March 23 (11 pages, 3 figures

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Spectroscopy of planetary atmospheres in our Galaxy

    No full text
    corecore