632 research outputs found

    Detecting the (Quasi-)Two-Body Decays of τ\tau Leptons in Short-Baseline Neutrino Oscillation Experiments

    Full text link
    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large-Δm2\Delta m^2 domain of \omutau oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of \ypi_gg decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ\tau (quasi-)two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ\tau.Comment: 34 pages, 8 figure

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    A Phenomenological Study on Lepton Mass Matrix Textures

    Get PDF
    The three active light neutrinos are used to explain the neutrino oscillations. The inherently bi-large mixing neutrino mass matrix and the Fritzsch type, bi-small mixing charged lepton mass matrix are assumed. By requiring the maximal \nu_\mu-\nu_\tau mixing for the atmospheric neutrino problem and the mass-squared difference approperiate for the almost maximal mixing solution to the solar neutrino problem, the following quantities are predicted: the \nu_e-\nu_\mu mixing, V_{e3}, CP violation in neutrino oscillations, and the effective electron-neutrino mass relevant to neutrinoless double beta decays.Comment: 6 pages, revtex, no figures, confusing points corrected, clarification and refernces adde

    The IGEX experiment revisited: a response to the critique of Klapdor-Kleingrothaus,Dietz, and Krivosheina

    Full text link
    This paper is a response to the article "Critical View to" the IGEX neutrinoless double-beta decay experiment..."published in Phys. Rev.D, Volume 65 (2002) 092007," by H.V.Klapdor-Kleingrothaus, A. Dietz, and I.V.Krivosheina, published as preprint hep-ph/0403056. The criticisms are confronted, and the questions raised are answered. We demonstrate that the lower limit quoted by IGEX, for the half life of Ge-76 neutrinoless double beta decay, 1.57x10**25 y, is correct and that there was no "arithmetical error"-as claimed in the " Critical Review" article

    Sterile Neutrinos in E_6 and a Natural Understanding of Vacuum Oscillation Solution to the Solar Neutrino Puzzle

    Get PDF
    If Nature has chosen the vacuum oscillation solution to the Solar neutrino puzzle, a key theoretical challenge is to understand the extreme smallness of the ΔmνeνX2\Delta m^2_{\nu_e-\nu_X} (1010eV2\sim 10^{-10} eV^2) required for the purpose. We find that in a class of models such as [SU(3)]^3 or its parent group E_6, which contain one sterile neutrino, νis\nu_{is} for each family, the Δmνiνis2\Delta m^2_{\nu_i-\nu_{is}} is proportional to the cube of the lepton Yukawa coupling. Therefore fitting the atmospheric neutrino data then predicts the νeνes\nu_e-\nu_{es} mass difference square to be (memμ)3Δmatmos2\sim (\frac{m_e}{m_{\mu}})^3 \Delta m^2_{atmos}, where the atmospheric neutrino data is assumed to be solved via the νμνμs\nu_{\mu}-\nu_{\mu s} oscillation. This provides a natural explanation of the vacuum oscillation solution to the solar neutrino problem.Comment: 7 pages, UMD-PP-99-109; new references added; no other chang

    Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Get PDF
    Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized

    Connecting bimaximal neutrino mixing to a light sterile neutrino

    Get PDF
    It is shown that if small neutrino masses owe their origin to the conventional seesaw mechanism and the MNS mixing matrix is in the exact bimaximal form, then there exist symmetries in the theory that allow one of the righthanded neutrinos to become naturally massless, making it a candidate for the sterile neutrino discussed in the literature. Departures from the exact bimaximal limit leads to tiny mass for the sterile neutrino as well as its mixing to the active neutrinos. This provides a minimal theoretical framework where a simultaneous explanation of the solar, atmospheric and LSND observations within the so-called 3+1 scenario may be possible.Comment: new references added; paper accepted for publication in Phys. Rev. D.(rapid communications); note adde

    Heatshield for Extreme Entry Environment Technology (HEEET) TPS for Ice Giants Probe Missions

    Get PDF
    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2018. Poster also discusses use of HEEET TPS for probe missions to the Ice Giants, Uranus and Neptune
    corecore