
Heatshield for Extreme Entry Environment Technology (HEEET) TPS for Ice Giants Probe Missions

D. Ellerby[§], T. Boghozian^{*}, D. Driver[§], J. Chavez-Garcia^{*}, M. Fowler⁵, P. Gage[#], M. Gasch[§], G. Gonzales^{*}, C. Kazemba, C. Kellermann^{\$}, S. Langston[%], J. Ma[§], M. Mahzari[§], F. Milos[§], O. Nishioka[§], G. Palmer*, K. Peterson[§], C. Poteet[%], D. Prabhu*, S. Splinter[%], M. Stackpoole[§], E. Venkatapathv[§], J. Williams*, and Z. Young[§]

- There are several possible HEEET solutions that fall within the manufacturing capabilities of Looms 1 and 2, *i.e.*, no upgrade is required beyond the present loom capability
- The entry flight path angle will be limited by the ability to demonstrate material performance in ground-test facilities, e.g., arc jets
- In addition to limiting the ballistic coefficient to lie between 200 and 250 kg/m², it is better to keep the nose radius between 300 and 400 mm

- interlocks the different layers together in the thru-thethickness direction
- manufacturable seam that meets aerothermal (reentry heating) and thermal structural requirements
- Seam = Gap Filler + Adhesive
- (Adhesive bond thickness = 0.010-inch)

2. Architecture and Engineering Test Unit (ETU) Manufacturing

- relevant scale
- for future missions

