63 research outputs found

    TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells <it>in vitro</it>.</p> <p>Methods</p> <p>RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells <it>in vitro </it>with MTT assays and matrigel transwell assay respectively.</p> <p>Results</p> <p>RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy.</p

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Das Cogan I Syndrom als seltene Differenzialdiagnose eines akuten bilateralen Hörverlustes

    No full text

    Management der postoperativen Liquorrhoe nach transtemporaler Akustikusneurinom-Resektion

    No full text

    Modulation Nikotin induzierter DNA-Schäden an humanen Lymphozyten und nasaler Mukosa

    No full text

    NO2 induziert DNA-Fragmentierung in ubiquitär vorkommenden Konzentrationen

    No full text

    Differenzierung Nikotin induzierter DNA-Schäden an humaner Nasenschleimhaut

    No full text
    • …
    corecore