1,540 research outputs found

    Mechanism of operation of the TFE-bonded gas-diffusion electrode

    Get PDF
    Mathematical analytical model predicts the performance of an electrode as a function of certain measurable physical characteristics. Concept assumes the catalyst particles form porous electrically conductive agglomerates which are completely flooded with electrolyte

    Development of cathodic electrocatalysts for use in low temperature H2/O2 fuel cells with an alkaline electrolyte Second quarterly report, Oct. 1 - Dec. 31, 1965

    Get PDF
    Cathodic electrocatalysts for use in low temperature hydrogen-oxygen fuel cells with an alkaline electrolyte-corrosion resistance and activity testing of materials and element

    Polar optical phonons in core-shell semiconductor nanowires

    Get PDF
    We obtain the the long-wavelength polar optical vibrational modes of semiconductor core-shell nanowires by means of a phenomenological continuum model. A basis for the space of solutions is derived, and by applying the appropriate boundary conditions, the transcendental equations for the coupled and uncoupled modes are attained. Our results are applied to the study of the GaAs-GaP core-shell nanowire, for which we calculate numerically the polar optical modes, analyzing the role of strain in the vibrational properties of this nanosystem

    Resonant hyper-Raman scattering in spherical quantum dots

    Full text link
    A theoretical model of resonant hyper-Raman scattering by an ensemble of spherical semiconductor quantum dots has been developed. The electronic intermediate states are described as Wannier-Mott excitons in the framework of the envelope function approximation. The optical polar vibrational modes of the nanocrystallites (vibrons) and their interaction with the electronic system are analized with the help of a continuum model satisfying both the mechanical and electrostatic matching conditions at the interface. An explicit expression for the hyper-Raman scattering efficiency is derived, which is valid for incident two-photon energy close to the exciton resonances. The dipole selection rules for optical transitions and Fr\"ohlich-like exciton-lattice interaction are derived: It is shown that only exciton states with total angular momentum L=0,1L=0,1 and vibrational modes with angular momentum lp=1l_p=1 contribute to the hyper-Raman scattering process. The associated exciton energies, wavefunctions, and vibron frequencies have been obtained for spherical CdSe zincblende-type nanocrystals, and the corresponding hyper-Raman scattering spectrum and resonance profile are calculated. Their dependence on the dot radius and the influence of the size distribution on them are also discussed.Comment: 12 pages REVTeX (two columns), 2 tables, 8 figure

    Several new catalysts for reduction of oxygen in fuel cells

    Get PDF
    Test results prove nickel carbide or nitride, nickel-cobalt carbide, titanium carbide or nitride, and intermetallic compounds of the transition or noble metals to be efficient electrocatalysts for oxygen reduction in alkaline electrolytes in low temperature fuel cells
    corecore