227 research outputs found

    Physics of SNeIa and Cosmology

    Full text link
    We give an overview of the current understanding of Type Ia supernovae relevant for their use as cosmological distance indicators. We present the physical basis to understand their homogeneity of the observed light curves and spectra and the observed correlations. This provides a robust method to determine the Hubble constant, 67 +- 8 (2 sigma) km/Mpc/sec, independently from primary distance indicators. We discuss the uncertainties and tests which include SNe Ia based distance determinations prior to delta-Ceph. measurements for the host galaxies. Based on detailed models, we study the small variations from homogeneities and their observable consequences. In combination with future data, this underlines the suitability and promises the refinements needed to determine accurate relative distances within 2 to 3 % and to use SNe Ia for high precision cosmology.Comment: to be published in "Stellar Candles", eds. Gieren et al. Lecture Notes in Physics (http://link.springer.de/series/lnpp

    Near-Infrared Spectroscopy of the Cassiopeia A and Kepler Supernova Remnants

    Get PDF
    Near-infrared spectra (0.95 - 2.4 micron) of the Cassiopeia A and Kepler supernova remnants (SNRs) are presented. Low-dispersion (R = 700) spectra were obtained for five bright fast-moving ejecta knots (FMKs) at two locations on the main shell and for three bright circumstellar knots (QSFs) near the southwest rim of Cas A. The main shell FMKs in Cas A exhibit a sparse near-infrared spectrum dominated by [S II] 1.03 micron emission with a handful of other, fainter emission lines. Among these are two high-ionization silicon lines, [Si VI] 1.96 micron and [Si X] 1.43 micron, which have been detected in AGNs and novae but never before in a supernova remnant. The near-infrared spectra of circumstellar QSFs in Cas A show a much richer spectrum, with strong He I 1.083 micron emission and over a dozen bright [Fe II] lines. Observed [Fe II] line ratios indicate electron densities of 5 - 9 * 10^4 cm^-3 in the QSFs. The Cas A QSF data are quite similar to the observed spectrum of a bright circumstellar knot along the northwest rim of the Kepler SNR, which also shows strong He I and [Fe II] emission with a measured electron density of 2.5 - 3 * 10^4 cm^-3. Finally, we present J- and K-band images of Cas A. The K-band image shows faint diffuse emission which has no optical or mid-infrared counterpart but is morphologically similar to radio continuum maps and may be infrared synchrotron radiation

    Detection of CO and Dust Emission in Near-Infrared Spectra of SN 1998S

    Get PDF
    Near-infrared spectra (0.95 -- 2.4 micron) of the peculiar Type IIn supernova 1998S in NGC 3877 from 95 to 355 days after maximum light are presented. K-band data taken at days 95 and 225 show the presence of the first overtone of CO emission near 2.3 micron, which is gone by day 355. An apparent extended blue wing on the CO profile in the day 95 spectrum could indicate a large CO expansion velocity (~2000 -- 3000 km/s). This is the third detection of infrared CO emission in nearly as many Type II supernovae studied, implying that molecule formation may be fairly common in Type II events, and that the early formation of molecules in SN 1987A may be typical rather than exceptional. Multi-peak hydrogen and helium lines suggest that SN 1998S is interacting with a circumstellar disk, and the fading of the red side of this profile with time is suggestive of dust formation in the ejecta, perhaps induced by CO cooling. Continuum emission that rises towards longer wavelengths (J -> K) is seen after day 225 with an estimated near-infrared luminosity >~ 10^40 erg/s. This may be related to the near-infrared excesses seen in a number of other supernovae. If this continuum is due to free-free emission, it requires an exceptionally shallow density profile. On the other hand, the shape of the continuum is well fit by a 1200 +- 150 K blackbody spectrum possibly due to thermal emission from dust. Interestingly, we observe a similar 1200 K blackbody-like, near-infrared continuum in SN 1997ab, another Type IIn supernova at an even later post-maximum epoch (day 1064+). A number of dust emission scenarios are discussed, and we conclude that the NIR dust continuum is likely powered by the interaction of SN 1998S with the circumstellar medium.Comment: 38 Pages, 12 Figures, Submitted to The Astronomical Journa

    Low Carbon Abundance in Type Ia Supernovae

    Full text link
    We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.Comment: accepted for publication in Ap

    Hubble Space Telescope WFPC2 Imaging of Cassiopeia A

    Get PDF
    The young galactic supernova remnant Cassiopeia A was imaged with Wide Field Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope through filters selected to capture the complete velocity range of the remnant\u27s main shell in several emission lines. The primary lines detected, along with the specific WFPC2 filters used, were [O III] λλ4959, 5007 (F450W), [N II] λ6583 (F658N), [S II] λλ6716, 6731 + [O II] λλ7319, 7330 + [O I] λλ6300, 6364 (F675W), and [S III] λλ9069, 9532 (F850LP). About three-quarters of the remnant\u27s 4\u27 diameter main shell was imaged with all four filters in three WFPC2 pointings, with most remaining shell regions imaged in just the F675W filter via three additional pointings. Considerable detail is observed in the reverse-shocked ejecta with typical knot scale lengths of 02–04 (1–2 × 1016 cm). Both bright and faint emission features appear highly clumped with little in the way of a smooth, diffuse emission component detected. Strong differences in [S III] and [O III] line intensities, indicating chemical abundance differences, are also seen, particularly in knots located along the bright northern limb and near the base of the northeastern jet. A line of curved overlapping filaments in the remnant\u27s northwestern rim appears to mark the location of the remnant\u27s reverse shock front in this region. The morphology of some finger-like ejecta structures elsewhere suggest cases in which the reverse shock front is encountering the remnant\u27s clumped ejecta. Large velocity shears (1000 km s-1), possibly associated with the formation of these Rayleigh-Taylor–like features, are found in the line profiles of several emission lines (e.g., [S III] λλ9069, 9532 and [Cl II] λ8679) in ground-based, optical spectra of knots near the remnant\u27s center. The [N II] images of the remnant\u27s circumstellar knots (QSFs) reveal them to be 01–06 thick knots and filaments, often with diffuse edges facing away from the center of expansion. Three-color composite images of the whole remnant and certain sections, along with individual filter enlargements of selected regions of the bright optical shell, are presented and discussed

    Dust and the type II-Plateau supernova 2004dj

    Get PDF
    We present mid-infrared (MIR) spectroscopy of a Type II-plateau supernova, SN 2004dj, obtained with the Spitzer Space Telescope, spanning 106--1393 d after explosion. MIR photometry plus optical/near-IR observations are also reported. An early-time MIR excess is attributed to emission from non-silicate dust formed within a cool dense shell (CDS). Most of the CDS dust condensed between 50 d and 165 d, reaching a mass of 0.3 x 10^{-5} Msun. Throughout the observations much of the longer wavelength (>10 microns) part of the continuum is explained as an IR echo from interstellar dust. The MIR excess strengthened at later times. We show that this was due to thermal emission from warm, non-silicate dust formed in the ejecta. Using optical/near-IR line-profiles and the MIR continua, we show that the dust was distributed as a disk whose radius appeared to be slowly shrinking. The disk radius may correspond to a grain destruction zone caused by a reverse shock which also heated the dust. The dust-disk lay nearly face-on, had high opacities in the optical/near-IR regions, but remained optically thin in the MIR over much of the period studied. Assuming a uniform dust density, the ejecta dust mass by 996 d was 0.5 +/- 0.1) x 10^{-4} Msun, and exceeded 10^{-4}Msun by 1393 d. For a dust density rising toward the center the limit is higher. Nevertheless, this study suggests that the amount of freshly-synthesized dust in the SN 2004dj ejecta is consistent with that found from previous studies, and adds further weight to the claim that such events could not have been major contributors to the cosmic dust budget.Comment: ApJ in press; minor changes c.f. v

    The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova

    Get PDF
    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {\lambda}1.0693 {\mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {\lambda}1.0927 {\mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {\Delta}m15. The prominent break at ~1.5 {\mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {\Delta}m15. The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.Comment: 14 pages, 13 figures, accepted for publication in Ap
    • …
    corecore