97 research outputs found

    Analgesia linked to Nav1.7 loss of function requires µ- and δ-opioid receptors

    Get PDF
    Background: Functional deletion of the Scn9a (sodium voltage-gated channel alpha subunit 9) gene encoding sodium channel Nav1.7 makes humans and mice pain-free. Opioid signalling contributes to this analgesic state. We have used pharmacological and genetic approaches to identify the opioid receptors involved in this form of analgesia. We also examined the regulation of proenkephalin expression by the transcription factor Nfat5 that binds upstream of the Penk gene. Methods: We used specific µ-, δ- and κ-opioid receptor antagonists alone or in combination to examine which opioid receptors were necessary for Nav1.7 loss-associated analgesia in mouse behavioural assays of thermal pain. We also used µ- and δ-opioid receptor null mutant mice alone and in combination in behavioural assays to examine the role of these receptors in Nav1.7 knockouts pain free phenotype. Finally, we examined the levels of Penk mRNA in Nfat5-null mutant mice, as this transcription factor binds to consensus sequences upstream of the Penk gene. Results: The pharmacological block or deletion of both µ- and δ-opioid receptors was required to abolish Nav1.7-null opioid-related analgesia. κ-opioid receptor antagonists were without effect. Enkephalins encoded by the Penk gene are upregulated in Nav1.7 nulls. Deleting Nfat5, a transcription factor with binding motifs upstream of Penk, induces the same level of enkephalin mRNA expression as found in Nav1.7 nulls, but without consequent analgesia. These data confirm that a combination of events linked to Scn9a gene loss is required for analgesia. Higher levels of endogenous enkephalins, potentiated opioid receptors, diminished electrical excitability and loss of neurotransmitter release together contribute to the analgesic phenotype found in Nav1.7-null mouse and human mutants. Conclusions: These observations help explain the failure of Nav1.7 channel blockers alone to produce analgesia and suggest new routes for analgesic drug development

    Peripheral Delta Opioid Receptors Mediate Formoterol Anti-allodynic Effect in a Mouse Model of Neuropathic Pain.

    Get PDF
    Neuropathic pain is a challenging condition for which current therapies often remain unsatisfactory. Chronic administration of β2 adrenergic agonists, including formoterol currently used to treat asthma and chronic obstructive pulmonary disease, alleviates mechanical allodynia in the sciatic nerve cuff model of neuropathic pain. The limited clinical data currently available also suggest that formoterol would be a suitable candidate for drug repurposing. The antiallodynic action of β2 adrenergic agonists is known to require activation of the delta-opioid (DOP) receptor but better knowledge of the molecular mechanisms involved is necessary. Using a mouse line in which DOP receptors were selectively ablated in neurons expressing Nav1.8 sodium channels (DOP cKO), we showed that these DOP peripheral receptors were necessary for the antiallodynic action of the β2 adrenergic agonist formoterol in the cuff model. Using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP), we established in a previous study, that mechanical allodynia is associated with a smaller percentage of DOPeGFP positive small peptidergic sensory neurons in dorsal root ganglia (DRG), with a reduced density of DOPeGFP positive free nerve endings in the skin and with increased DOPeGFP expression at the cell surface. Here, we showed that the density of DOPeGFP positive free nerve endings in the skin is partially restored and no increase in DOPeGFP translocation to the plasma membrane is observed in mice in which mechanical pain is alleviated upon chronic oral administration of formoterol. This study, therefore, extends our previous results by confirming that changes in the mechanical threshold are associated with changes in peripheral DOP profile. It also highlights the common impact on DOP receptors between serotonin noradrenaline reuptake inhibitors such as duloxetine and the β2 mimetic formoterol.journal article20192020 02 14importe

    A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons.

    Get PDF
    BACKGROUND: The delta opioid receptor (DOR) is broadly expressed throughout the nervous system; it regulates chronic pain, emotional responses, motivation, and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. We used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. METHODS: We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1(fl/fl) (Dlx-DOR) mice and tested main central DOR functions through behavioral testing. RESULTS: The DOR proteins were strongly deleted in olfactory bulb and striatum and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity, and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. The Dlx-DOR mice showed lower levels of anxiety in the elevated plus maze, opposing the known high anxiety in constitutive DOR knockout animals. Also, Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos protein staining after novelty suppressed feeding was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. CONCLUSIONS: We demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. In emotional responses, DORs exert dual anxiolytic and anxiogenic roles, both of which may have implications in the area of anxiety disorders

    Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells

    Get PDF
    Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreERTM) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice. The pattern of recombination closely mirrored that of transgene expression. The percentage of astrocytes undergoing recombination varied from region to region ranging from 35% to 70% while a much smaller portion (<1%) of oligodendrocytes and neural precursor cells showed evidence of Cre activity. These mouse lines will provide important tools to dissect gene function in glial cells and in gliomagenesis

    Attenuation of Vaccinia Tian Tan Strain by Removal of Viral TC7L-TK2L and TA35R Genes

    Get PDF
    Vaccinia Tian Tan (VTT) was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP) flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines

    In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists

    Get PDF
    GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs

    mu-Opioid receptor antibody reveals tissue-dependent specific staining and increased neuronal mu-receptor immunoreactivity at the injured nerve trunk in mice

    Get PDF
    Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal mu-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the mu-receptor protein expression in the dorsal root ganglia (DRG), directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the mu-receptor antibody staining specificity. We found that the antibody specifically labeled mu-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of mu/delta/kappa-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of mu-receptor expression in the DRG was not possible. However, we demonstrate that the mu-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, mu-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies' specificity, preferably using knockout animals
    corecore