880 research outputs found

    Finite, diffeomorphism invariant observables in quantum gravity

    Full text link
    Two sets of spatially diffeomorphism invariant operators are constructed in the loop representation formulation of quantum gravity. This is done by coupling general relativity to an anti- symmetric tensor gauge field and using that field to pick out sets of surfaces, with boundaries, in the spatial three manifold. The two sets of observables then measure the areas of these surfaces and the Wilson loops for the self-dual connection around their boundaries. The operators that represent these observables are finite and background independent when constructed through a proper regularization procedure. Furthermore, the spectra of the area operators are discrete so that the possible values that one can obtain by a measurement of the area of a physical surface in quantum gravity are valued in a discrete set that includes integral multiples of half the Planck area. These results make possible the construction of a correspondence between any three geometry whose curvature is small in Planck units and a diffeomorphism invariant state of the gravitational and matter fields. This correspondence relies on the approximation of the classical geometry by a piecewise flat Regge manifold, which is then put in correspondence with a diffeomorphism invariant state of the gravity-matter system in which the matter fields specify the faces of the triangulation and the gravitational field is in an eigenstate of the operators that measure their areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-

    The physical hamiltonian in nonperturbative quantum gravity

    Full text link
    A quantum hamiltonian which evolves the gravitational field according to time as measured by constant surfaces of a scalar field is defined through a regularization procedure based on the loop representation, and is shown to be finite and diffeomorphism invariant. The problem of constructing this hamiltonian is reduced to a combinatorial and algebraic problem which involves the rearrangements of lines through the vertices of arbitrary graphs. This procedure also provides a construction of the hamiltonian constraint as a finite operator on the space of diffeomorphism invariant states as well as a construction of the operator corresponding to the spatial volume of the universe.Comment: Latex, 11 pages, no figures, CGPG/93/

    Loop Quantization of Maxwell Theory and Electric Charge Quantization

    Full text link
    We consider the loop quantization of Maxwell theory. A quantization of this type leads to a quantum theory in which the fundamental excitations are loop-like rather than particle-like. Each such loop plays the role of a quantized Faraday's line of electric flux. We find that the quantization depends on an arbitrary choice of a parameter e that carries the dimension of electric charge. For each value of e an electric charge that can be contained inside a bounded spatial region is automatically quantized in units of hbar/4*pi*e. The requirement of consistency with the quantization of electric charge observed in our Universe fixes a value of the, so far arbitrary, parameter e of the theory. Finally, we compare the ambiguity in the choice of parameter e with the beta-ambiguity that, as pointed by Immirzi, arises in the loop quantization of general relativity, and comment on a possible way this ambiguity can be fixed.Comment: 7 pages, Revtex, no figures, typos corrected and one reference adde

    A realist interpretation of quantum mechanics based on undecidability due to gravity

    Get PDF
    We summarize several recent developments suggesting that solving the problem of time in quantum gravity leads to a solution of the measurement problem in quantum mechanics. This approach has been informally called "the Montevideo interpretation". In particular we discuss why definitions in this approach are not "for all practical purposes" (fapp) and how the problem of outcomes is resolved.Comment: 7 pages, IOPAMS style, no figures, contributed to the proceedings of DICE 2010, Castiglioncello, slightly improved versio

    Is the third coefficient of the Jones knot polynomial a quantum state of gravity?

    Get PDF
    Some time ago it was conjectured that the coefficients of an expansion of the Jones polynomial in terms of the cosmological constant could provide an infinite string of knot invariants that are solutions of the vacuum Hamiltonian constraint of quantum gravity in the loop representation. Here we discuss the status of this conjecture at third order in the cosmological constant. The calculation is performed in the extended loop representation, a generalization of the loop representation. It is shown that the the Hamiltonian does not annihilate the third coefficient of the Jones polynomal (J3J_3) for general extended loops. For ordinary loops the result acquires an interesting geometrical meaning and new possibilities appear for J3J_3 to represent a quantum state of gravity.Comment: 22 page

    Classical Loop Actions of Gauge Theories

    Full text link
    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.Comment: LaTeX 14 page

    Lattice knot theory and quantum gravity in the loop representation

    Get PDF
    We present an implementation of the loop representation of quantum gravity on a square lattice. Instead of starting from a classical lattice theory, quantizing and introducing loops, we proceed backwards, setting up constraints in the lattice loop representation and showing that they have appropriate (singular) continuum limits and algebras. The diffeomorphism constraint reproduces the classical algebra in the continuum and has as solutions lattice analogues of usual knot invariants. We discuss some of the invariants stemming from Chern--Simons theory in the lattice context, including the issue of framing. We also present a regularization of the Hamiltonian constraint. We show that two knot invariants from Chern--Simons theory are annihilated by the Hamiltonian constraint through the use of their skein relations, including intersections. We also discuss the issue of intersections with kinks. This paper is the first step towards setting up the loop representation in a rigorous, computable setting.Comment: 23 pages, RevTeX, 14 figures included with psfi

    Consistent canonical quantization of general relativity in the space of Vassiliev knot invariants

    Get PDF
    We present a quantization of the Hamiltonian and diffeomorphism constraint of canonical quantum gravity in the spin network representation. The novelty consists in considering a space of wavefunctions based on the Vassiliev knot invariants. The constraints are finite, well defined, and reproduce at the level of quantum commutators the Poisson algebra of constraints of the classical theory. A similar construction can be carried out in 2+1 dimensions leading to the correct quantum theory.Comment: 4 pages, RevTex, one figur

    The Extended Loop Group: An Infinite Dimensional Manifold Associated with the Loop Space

    Get PDF
    A set of coordinates in the non parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analized in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.Comment: The resubmited paper contains the title and abstract, that were omitted in the previous version. 42 pages, report IFFI/93.0
    • …
    corecore