1,229 research outputs found

    Tests of mode coupling theory in a simple model for two-component miscible polymer blends

    Get PDF
    We present molecular dynamics simulations on the structural relaxation of a simple bead-spring model for polymer blends. The introduction of a different monomer size induces a large time scale separation for the dynamics of the two components. Simulation results for a large set of observables probing density correlations, Rouse modes, and orientations of bond and chain end-to-end vectors, are analyzed within the framework of the Mode Coupling Theory (MCT). An unusually large value of the exponent parameter is obtained. This feature suggests the possibility of an underlying higher-order MCT scenario for dynamic arrest.Comment: Revised version. Additional figures and citation

    Critical Decay at Higher-Order Glass-Transition Singularities

    Full text link
    Within the mode-coupling theory for the evolution of structural relaxation in glass-forming systems, it is shown that the correlation functions for density fluctuations for states at A_3- and A_4-glass-transition singularities can be presented as an asymptotic series in increasing inverse powers of the logarithm of the time t: ϕ(t)figi(x)\phi(t)-f\propto \sum_i g_i(x), where gn(x)=pn(lnx)/xng_n(x)=p_n(\ln x)/x^n with p_n denoting some polynomial and x=ln (t/t_0). The results are demonstrated for schematic models describing the system by solely one or two correlators and also for a colloid model with a square-well-interaction potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Colloidal gelation and non-ergodicity transitions

    Full text link
    Within the framework of the mode coupling theory (MCT) of structural relaxation, mechanisms and properties of non-ergodicity transitions in rather dilute suspensions of colloidal particles characterized by strong short-ranged attractions are studied. Results building on the virial expansion for particles with hard cores and interacting via an attractive square well potential are presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.: Condens. Matte

    Interface free energies in p-spin glass models

    Full text link
    The replica method has been used to calculate the interface free energy associated with the change from periodic to anti-periodic boundary conditions in finite-dimensional p-spin glass models in the phase which at mean-field level has one-step replica symmetry breaking (1RSB). In any finite dimension the interface free energy is exponentially small for a large system. This result implies that in finite dimensions, the 1RSB state does not exist, as it is destroyed by thermal excitation of arbitrarily large droplets. The implications of this for the theory of structural glasses are discussed.Comment: 4 page

    Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures

    Get PDF
    The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.Comment: 8 pages, 10 figure

    A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid

    Full text link
    Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule's arrested position in the glass state and the reorientational correlators for angular-momentum index =1\ell = 1 and =2\ell = 2 near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the α\alpha-process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule's inertia parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
    corecore