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Abstract. We present molecular dynamics simulations on the structural relaxation

of a simple bead-spring model for polymer blends. The introduction of a different

monomer size induces a large time scale separation for the dynamics of the two

components. Simulation results for a large set of observables probing density

correlations, Rouse modes, and orientations of bond and chain end-to-end vectors, are

analyzed within the framework of the Mode Coupling Theory (MCT). An unusually

large value of the exponent parameter is obtained. This feature suggests the possibility

of an underlying higher-order MCT scenario for dynamic arrest.

PACS numbers: 64.70.Pf, 83.80.Tc, 83.10.Rs

1. Introduction

Polymer blends are soft-matter systems which exhibit ‘dynamic asymmetry’ in the

meaning that, starting from two homopolymers with different mobilities, two separated

segmental dynamics can still be observed in the blend. Phenomenological approaches

usually consider thermally driven concentration fluctuations [1] and self-concentration

effects induced by chain connectivity [2] as key ingredients for structural relaxation in

polymer blends [3]. A recent approach combines self-concentration effects with ideas

of the Adam-Gibbs theory [4]. For most of the investigated systems, dynamics of the

two components in the blend display qualitatively similar features. However, recent

experimental results by nuclear magnetic resonance (NMR) [5, 6], dielectric spectroscopy

[7, 8, 9, 10, 11], or neutron scattering [12, 13] suggest that a rather different scenario

arises when the two homopolymers exhibit very different glass transition temperatures.

Hence, for dilute concentrations of the fast component, the two components in the

blend exhibit strong dynamic inmiscibility. A large separation in their relaxation times

is observed, which can be of even 12 orders of magnitude in blends of poly(ethylene
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oxide)/poly(methyl methacrylate) (PEO/PMMA) for extreme dilution of PEO [6]. In

such conditions the motion of the chains of the fast component takes place in a slowly

relaxing matrix formed by the slow component, providing a connection with the problem

of confinement in host media with interconnected voids.

We have recently performed an investigation on the structural relaxation dynamics

of a simple bead-spring model for polymer blends [14]. The introduction of monomer

size disparity between the two components induces a large time scale separation for

low concentrations of the fast component, which displays unusual relaxation features.

Hence, density-density correlators exhibit logarithmic decays over time intervals of even

four decades and a concave-to-convex crossover by varying the thermodynamic state

point (i.e., the control parameters) or the wave vector [14]. Dynamic features observed

for this simplified model are supported by recent fully atomistic simulations on the blend

PEO/PMMA [12].

We have discussed the unusual features reported in Ref. [14] within the framework

of the Mode Coupling Theory (MCT) of the glass transition [15, 16], and suggested

an underlying higher-order MCT transition as the origin of the observed anomalous

relaxation scenario. Higher-order MCT transitions were initially predicted by schematic

models [17], and later derived for simplified models of short-ranged attractive colloids

[18, 19]. These systems show two different mechanisms for dynamic arrest: steric

repulsion characteristic of colloidal systems, and formation of reversible bonds, induced

by the short-ranged attraction. Coexistence of both mechanisms of very different

localization lengths [18, 19] yields a higher-order MCT transition in a certain region

of the temperature-density plane. The mentioned anomalous relaxation features are

derived from the MCT equations as specific solutions associated to the higher-order

point [18, 19, 20, 21].

Results for the mean squared displacements and density-density correlators in the

bead-spring polymer blend of Ref. [14] display striking similarities with qualitative

features associated to higher-order MCT transitions. Similar results have also been

observed in later simulations of binary mixtures of non-bonded particles with large

size disparity, both for soft [22, 23] and ultrasoft interactions [24]. Finally, very

recent two-dimensional NMR experiments on a polymer-plasticizer system have revealed

logarithmic relaxation for the strongly confined plasticizer [25]. Hence, this collection

of similar experimental and simulation results suggest a common relaxation scenario

for multicomponent systems exhibiting strong dynamic asymmetry. Moreover, the

mentioned analogies with short-ranged attractive colloids suggest that the higher-order

MCT scenario might be a general feature of systems showing several mechanisms for

dynamic arrest. For the mentioned polymeric and non-polymeric mixtures, we have

suggested bulk-like caging and confinement [14, 22, 23]. These mechanisms would be

respectively induced by the presence of neighbouring small particles and by the slow

matrix formed by the large particles.

It is worth mentioning that solutions of the MCT equations for a fluid of hard

spheres confined in a disordered matrix of strictly static obstacles explicitly reveal the
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existence of a higher-order transition [26]. As discussed in Ref. [26], the strictly static

nature of the matrix induces differences with the former mixtures, where the matrix

shows a slow relaxation. Hence, though they share common features for the dynamics

of the confined component, a comparison of results between both kind of mixtures must

be taken with care.

The test of MCT predictions for the bead-spring blend model reported in Ref. [14]

was restricted to density-density correlators. In this article we present a systematic

test for a large set of correlators probing different dynamic features as Rouse modes or

orientations of bond and chain end-to-end vectors. Consistently with MCT predictions,

a common set of dynamic exponents provides a good description of dynamic correlators

in the early-middle stage of the structural α-relaxation. Consistently with previous

results [14], the unusually large value obtained for the exponent parameter suggests

that the observed anomalous relaxation features might be associated to an underlying

higher-order order MCT scenario.

The article is organized as follows. In Section 2 we summarize the main details of

the simulated model. In Section 3 we present simulation results for static correlations.

The main predictions of MCT are exposed in Section 4. We discuss within the framework

of MCT relaxation features of the slow and fast component in, respectively, sections 5

and 6. Conclusions are given in Section 7.

2. Model and simulation details

The model introduces a binary mixture of bead-spring chains (of the species A and

B). Each chain consists of N = 10 monomers of mass m = 1. All the monomers in

a same chain belong to the same species (i.e., all them are A-like or B-like). Two

given monomers (placed at a same chain or at different ones) interact through a soft-

sphere potential plus a quadratic term, Vαβ(r) = 4ǫ[(σαβ/r)
12−C0+C2(r/σαβ)

2], where

ǫ = 1 and α, β ∈ {A, B}. The interaction is zero beyond a cutoff distance rc = cσαβ ,

with c = 1.15. Continuity of potential and forces at r = rc is guaranteed by setting

the values C0 = 7c−12 and C2 = 6c−14. The radii of the different pair interactions

are σBB = 1, σAA = 1.6σBB, and σAB = 1.3σBB. Chain connectivity is introduced

by a FENE bonding potential [27], V FENE
αα (r) = −kR2

0ǫ ln[1 − (R0σαα)
−2r2], between

consecutive monomers, with k = 15 and R0 = 1.5. The superposition of Vαβ(r) and

V FENE
αα (r) provides an effective bonding potential for connected monomers with a sharp

minimum at r = 0.985σαβ , which makes bond crossing impossible.

The blend composition is defined as xB = NB/(NA +NB), where Nα is the number

of α-chains. All the data presented here correspond to a fixed composition xB = 0.3

(we have simulated a mixture of NA = 210 and NB = 90 chains). We use a packing

fraction φ = (π/6)L−3[NAσ
3
AA +NBσ

3
BB] = 0.53, with L the side of the cubic simulation

cell. The value φ = 0.53 is comparable to those used in simulations of slow relaxation

in simple liquids [28, 29]. In the following temperature T , distance, wave vector q, and

time t will be given, respectively, in units of ǫ/kB, σBB, σ
−1
BB, and σBB(m/ǫ)1/2.
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The system is prepared by placing the chains randomly in the simulation cell, with

a constraint that avoids monomer core overlapping. The Newton equations of motion

are integrated in the velocity Verlet scheme [30], with a time step ranging from 2×10−4

to 5 × 10−3 for, respectively, the highest and the lowest investigated T . Standard

periodic boundary conditions are used for calculation of monomer-monomer distances

entering in the interactions. Computational expense for the latter calculation is reduced

by implementing a standard link-cell method [30]. The system is thermalized at the

selected temperature by periodic velocity rescaling. Then the equilibrium run for data

acquisition is performed in the microcanonical ensemble (constant energy). During this

run no drift in thermodynamic quantities is observed, either aging effects in dynamic

correlators computed for different time origins. Statistical averages at a given state

point are performed over typically 20-40 independent runs.

3. Static properties

In this section we provide information about static correlations in the bead-

spring blend. We compute normalized partial static structure factors, Sαβ(q) =

〈ρα(q, 0)ρ
∗

β(q, 0)〉/(N
√

NαNβ). The quantity ρα(q, t) is the density fluctuation for wave

vector q and is defined as ρα(q, t) =
∑

j exp[iq · rαj (t)], the sum extending over all the

particles of the species α ∈ {A,B}. Fig. 1 shows, for a low temperature T = 0.4,

results for A-A, B-B, and A-B pairs. Intrachain static structure factors (i.e., chain form

factors), Schain
αα (q), are also displayed. The latter quantities are computed by restricting

the product ρα(q, 0)ρ
∗

α(q, 0) =
∑

j,k exp{iq · [rαj (0)− rαk (0)]} over pairs of monomers j, k

belonging to a same chain. A sharp maximum is observed in SAA(q) at q = 4.5, which

corresponds to a typical distance of 1.4 between A-monomers. Results for SAA(q) are

qualitatively similar to those reported for the homopolymer case in a similar bead-spring

model [29, 31]. A weak low-q structure is observed in the present case, which originates

from the presence of ‘holes’ in the matrix of A-monomers. These holes are created by

the inclusion of the B-monomers. The negative values of SAB(q) observed at small wave

vectors are a signature of anticorrelation effects between A- and B-monomers at large

distances, and indicate a moderate degree of demixing. This feature is illustrated in Fig.

2, which shows a typical configuration of the B-chains. The latter are not homogeneously

distributed but form a sort of cluster structure.

The partial static structure factor for B-B pairs, SBB(q), exhibits a rather different

q-dependence (Fig. 1). From a comparison with the form factor for B-chains, Schain
BB (q),

it is clear that SBB(q) is largely dominated by intrachain contributions, as expected for

high dilution of the B-chains in the matrix formed by the A-chains. The peak at q = 7.2

corresponds to a typical distance of 0.87 between B-monomers.

Data for the chain form factors in Fig. 1 are also compared with the Debye

function [32, 33], SDebye
αα (q) = 2Nq−4(Rα

g )
−4{exp[−q2(Rα

g )
2] + q2(Rα

g )
2 − 1}, which is

obtained by assuming a Gaussian distribution of monomer-monomer distances within

the chain [32, 33]. As previously observed for the homopolymer case [31], Gaussian
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Figure 1. Partial static structure factors, SAA(q), SBB(q) and SAB(q), at T =

0.4. Also included are the chain form factors, Schain
AA (q), Schain

BB (q), as well as the

corresponding Debye functions, SDebye
AA (q), SDebye

BB (q). Arrows indicate the wave vectors

q = 2π/Rα
e,g, where Rα

e and Rα
g are respectively the chain end-to-end distance and

gyration radius of the species α.

Figure 2. A typical configuration of the B-chains.

statistics approximately work at low q but clearly break down for wave vectors probing

distances smaller than the chain gyration radius Rα
g . The magnitude of the deviations of

simulation data from the Debye function is similar to observations for the homopolymer

case [31]. Hence, chain statistics is not significantly affected by blending.
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4. Main predictions of MCT

In this section we summarize some of the main predictions of the Mode Coupling

Theory (MCT) for the glass transition. Extensive reviews can be found, e.g., in Refs.

[15, 16, 34, 35, 36]. In its ideal version, MCT predicts a sharp transition from an

ergodic liquid to a non-ergodic glassy state for a given value of the relevant control

parameter ξ (in the following the temperature, T , though results exposed below are

valid for any ξ). On approaching the transition point T = Tc, MCT establishes a

set of quantitative predictions for any correlator coupled to density fluctuations, Φ(t).

An example is normalized density-density correlators of wave vector q, Fαα(q, t) =

〈ρα(q, t)ρ
∗

α(q, 0)〉/Sαα(q), for the species α. At the critical temperature T = Tc the

long-time limit of Φ(t) jumps from zero to a non-zero value, denoted as the critical non-

ergodicity parameter, Φc. In the standard case (type-B transitions) the jump in Φ(t) is

discontinuous, i.e., Φc takes a finite positive value.

For ergodic states close to the transition point Φ usually exhibits a first decay to

a plateau, whose time extension increases as the transition is approached. This plateau

regime corresponds to the temporary trapping of each particle within the cage formed

by its neighbouring ones, i.e., the well-known caging effect which is generally present

in, e.g., supercooled liquids or jammed systems. At times longer than the so-called first

MCT time scale tσ, the correlator Φ starts a second decay from the plateau to zero. This

second decay is commonly known as the α-process and represents the full decorrelation

of the system from its initial configuration, i.e. the structural relaxation. According to

MCT, the initial part of the α-process (denoted as the von Schweidler regime) is given

by a power law decay ∝ −tb, with 0 ≤ b ≤ 1. A power-law series expansion extends the

description of the α-decay to longer times:

Φ(t) = Φc − hΦ(t/τα)
b + h

(2)
Φ (t/τα)

2b +O(t3b). (1)

The prefactors hΦ and h
(2)
Φ are state point-independent and are different for each

correlator Φ. On the contrary, the von Schweidler exponent b is common to all

correlators. The characteristic time scale of the α-relaxation, τα, is the second MCT

time scale. It is also unique for all correlators, and diverges at the transition point

as ∝ (T − Tc)
−γ (see below). The α-decay can often be described by an empirical

Kohlrausch-Williams-Watt (KWW) function, ∝ exp[−(t/τ)βΦ ], with a Φ-dependent

stretching exponent 0 < βΦ < 1. An interesting prediction of MCT [37] is that

βq = b and τ ∝ q−1/b in the limit of large q, both for density-density [F (q, t)],

and self-correlators, F s
α(q, t) =

〈

∑

j exp{iq · [rα,j(t)− rα,j(0)]}
〉

/(NNα). This result

[23, 28, 29, 31, 38, 39, 40, 41] provides a consistency test for data analysis.

Another prediction of MCT for state points close to the transition point is the

power law dependence of the diffusivity and the relaxation time τΦx :

τΦx , D
−1 ∝ (T − Tc)

−γ. (2)

The relaxation time τΦx of the correlator Φ is defined as the time where Φ(t) decays

to some small value x, provided it is well below the plateau. The time-temperature
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superposition principle of the MCT establishes that, for t much longer than the first

time scale tσ, Φ(t/τα) = Φ̃, where Φ̃ is a Φ-dependent scaling function. According

to this prediction, for a fixed x the ratio τΦx /τα is temperature-independent for any

τΦx ≫ tσ, i.e, τ
Φ
x ∝ τα. In other words, τΦx will be Φ-modulated but will follow the same

power law behaviour in T as the α-relaxation time τα (even if τΦx ≫ τα). Note that, in

the MCT terminology, τα is a single time scale, though its value can be approximately

probed by evaluating dynamic correlators Φ for which τΦx ∼ τα. This is the case of,

e.g., the density-density correlator F (q, t) for wave vector q at the maximum of the

static structure factor S(q), since the former probes decorrelation over typical distances

between nearest-neighbour particles. The relaxation time of F (q, t) is indeed often

denoted as the ‘α-relaxation time’, though in the context of MCT the latter strictly

corresponds to τα.

The exponent γ in Eq. (2) is given by the relation:

γ =
1

2a
+

1

2b
, (3)

with 0 ≤ a ≤ 0.395. Hence γ ≥ 1.766. The critical exponents a, b, and γ are univocally

related with the so-called exponent parameter λ through:

λ =
Γ2(1 + b)

Γ(1 + 2b)
=

Γ2(1− a)

Γ(1− 2a)
, (4)

where Γ is the Gamma function. The exponent parameter λ is univocally determined

by the static correlations (i.e., by the total and partial static structure factors) at the

transition point T = Tc. For type-B transitions it takes values 1/2 ≤ λ ≤ 1.

When numerical solutions of the MCT equations are not available the non-

ergodicity parameters, prefactors and exponents in Eqs. (1,2,3,4) — which are system-

dependent quantities controlled by static correlations — are empirically obtained as

fit parameters from simulation or experimental data. Consistency of the data analysis

requires that the so-obtained set of exponents fulfill both Eqs. (3) and (4).

5. Dynamics of the slow component in the blend

Fig. 3 shows results for the mean squared displacement averaged over all the monomers,

〈∆r2α(t)〉, both for A- and B-chains. The introduction of monomer size disparity,

σAA/σBB = 1.6, induces a large time scale separation between the two components,

for low concentration of the B-chains, by decreasing temperature. Now we analyze

relaxation features for the slow A-component. Results for the fast B-component are

analyzed in the next section.

Figs. 4, 5, 6, 7 and 8 show, for the A-chains, a consistent test — i.e., with

a common set of exponents — of MCT predictions for several dynamic correlators,

diffusivities, and relaxation times. Fig. 4 shows, for several wave vectors, results at

T = 0.4 for the intrachain coherent correlator F chain
AA (q, t). The latter is computed as

〈

∑

j,k exp{iq · [rα,j(t)− rα,k(0)]}
〉

/[NNαS
chain
αα (q)], for any species α. In this equation

the sum only includes j, k pairs belonging to a same α-chain. Fig. 5 shows normalized
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Figure 4. Symbols: For different wave vectors, intrachain coherent correlator for A-A

pairs, F chain
AA (q, t), at T = 0.4 . Lines are fits to Eq. (1) with an exponent b = 0.30.

correlators of the Rouse modes φA
pp(t) at T = 0.5. The latter are defined as

Φα
pp(t) = 〈Xα

p (t) · X
α
p (0)〉/〈[X

α
p (0)]

2〉, where the Rouse normal modes [32, 33] of index

p = 0, 1, ...N − 1 are given by Xp(t) = N−1
∑N

j=1 rj(t) cos[jpπ/N ]. Fig. 6a displays, at

T = 0.45, angular correlators C
(b)A
n (t) for the bond vector, b(t), between consecutive

monomers. Such correlators are defined as C
(b)A
n (t) = Pn[cos θ(t)], where Pn is the

Legendre polynomial of order n, and cos θ(t) = 〈b(t) ·b(0)〉/〈b2(0)〉. Angular correlators

C
(e)A
n (t) for the chain end-to-end vector, e(t), are defined in analogous way, with

cos θ(t) = 〈e(t) · e(0)〉/〈e2(0)〉. Data for C
(e)A
n (t) at T = 0.5 are given in Fig. 6b.

Lines in Figs. 4, 5, and 6 are fits of the α-decay of the mentioned correlators to a

power-law series expansion as Eq. (1) with a common von Schweidler exponent b = 0.30.
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Figure 6. Panel (a): Symbols correspond, for different values of n, to angular

correlators C
(b)A
n (t) of the bond vector of the A-chains. Lines are fits to Eq. (1)

with an exponent b = 0.30. The temperature is T = 0.45. Panel (b): As panel (a) for

angular correlators C
(e)A
n (t) of the end-to-end vector. The temperature is T = 0.5.

Only terms up to second order (t2b) are included in the fit procedure (in the following,

references to this equation will be understood as limited to second order). It must be

stressed that the validity of Eq. (1) for the early-middle α-decay must not be assessed by

the length of the vertical interval of Φ(t) that it is able to cover. Indeed, if the relaxation

time of the analyzed correlator is much longer than the α-time τα, the vertical interval

described by (1) will be rather small, as we will discuss below. The prefactors hΦ and

h
(2)
Φ in (1), which yield the amplitude of the decay, are generally in anti-phase with Φc

[34, 36, 38, 42] and are small for large values of the latter. Hence, for correlators with high

plateaux Eq. (1) will only describe a small vertical interval of the decay. On the contrary,
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line indicates the large-q limit β(q) = b = 0.30. Panel (b): As panel (a) for the

corresponding KWW times (see text). The dashed line corresponds to the power law

∝ q−1/b, with b = 0.30.

validity of (1) is given by the extension of the time window (i.e., horizontal interval)

that it is able to describe. In the present case a good description of the simulation

data is obtained over three time decades for the lowest investigated temperature, a time

window of validity which is typically achieved in simulations. It must be noted that

such a time window corresponds to a specific dynamic regime, the early-middle stage of

the structural α-relaxation. However, relaxation of a given correlator to a small value

(e.g., x = 0.2) can occur at a very different time scale τΦx . This is the case of, e.g.,

low-index correlators of Rouse modes or chain end-to-end vectors. The latter show a

decay much slower than density-density correlators FAA(q, t) at the maximum of SAA(q)

(q = 4.5), which properly probe the time scale τα of the structural α-relaxation for the

A-chains. For FAA(q, t) we find τ0.2 = 1.7 × 104 at T = 0.5, while relaxation times at

the same temperature for low indexes of ΦA
pp(t) and C

(e)A
n (t) are clearly much longer (see

Figs. 5 and 6b). Having said so, MCT establishes than asymptotic expansions as (1)

will be observed for any dynamic correlator in the specific early-middle time window of

the α-relaxation, the proccess here investigated.

Fig. 7 shows a test of the MCT predictions β(q → ∞) = b, and τ(q → ∞) ∝ q−1/b.

The stretching exponents β, βcha, and βs, correspond respectively to the density-density,

intrachain coherent and self-correlators of the A-monomers at T = 0.4, and are obtained

as fits of the decay from the plateau to a KWW function. The corresponding KWW

times are respectively denoted as τ , τ cha, and τ s. The mentioned large-q predictions

for stretching exponents and KWW times are fulfilled with b = 0.30, i.e., with the

same value of the von Schweidler exponent used in the fits of the dynamic correlators

presented in Figs. 4, 5, and 6.

The exponent b = 0.30 provides through Eqs. (3) and (4) the values λ = 0.90,

a = 0.21, and γ = 4.0. Now we test the validity of Eq. (2) with this latter value of
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0.4 ,

τ s0.2, and τb50.3 to the MCT power law ∝ (T − Tc)
−γ , with Tc = 0.37 and γ = 4.0.

γ. Fig. 8 shows the temperature dependence of the relaxation times τΦx of several

dynamic correlators Φ for the A-monomers. As mentioned above, these times are

defined as those where the corresponding correlator decays to a value x. Notations τ0.2,

τ chain0.2 , τ s0.2, τ
b5
0.3, τ

e8
0.3, τ

R8
0.3 , and τR5

0.4 correspond, respectively, to the correlators FAA(q, t),

F chain
AA (q, t), F s

A(q, t), C
(b)A
5 (t), C

(e)A
8 (t), φA

88(t), and φA
55(t). The wave vector for the first

three correlators is q = 4.6, an intermediate value between the main maxima of SAA(q)

and Schain
AA (q) (see Fig. 1). The selected values of x are well below the plateau height of

the correlator (see Figs. 4, 5, and 6). Also displayed is the inverse diffusivity, D−1
CM, of

the center-of-mass of the A-chains, which is defined as the long time limit of the ratio

6t/〈[∆rCM
A (t)]2〉, where 〈[∆rCM

A (t)]2〉 is the corresponding mean squared displacement.

Dashed lines in Fig. 8 represent fits to the power law (2) by forcing a common

critical temperature Tc for all the data sets, with a fixed exponent γ = 4.0, i.e., the

value independently determined from the analysis previously presented in Figs. 4, 5, 6

and 7. A value Tc = 0.37 provides the best global fit with the mentioned constraint.

Interestingly, this value is much lower than the one obtained for the homopolymer state

[14] at the same investigated packing fraction φ = 0.53, Tc = 0.52. The latter value is

obviously identical for the limits xB = 0 and xB = 1, since the energy scale ǫ of the

model is the same for all the pair interactions, which only differ by the length scale

σαβ (see Section 2). Hence, blending at a fixed packing fraction stabilizes the ergodic

phase as compared to the homopolymer state, in analogy with the behaviour observed

for colloidal binary mixtures of similar size disparity [42, 43, 44].

A good description of all the data sets is obtained over more than two decades in

relaxation time and inverse diffusivity. As expected, due to the asymptotic character

of Eq. (2), deviations from power-law behaviour occur at high temperature. Such
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deviations are also present below some ill-defined temperature very close to Tc. This

feature is often observed if one investigates dynamics at sufficiently low temperatures

[45, 46, 47] and is usually related with the presence of activated hopping events, which

are not accounted for within the ideal version of the MCT.

The analysis of simulation data of the slow A-component that has been presented

in Figs. 4, 5, 6, 7, and 8 consists of a series of independent tests of several predictions

of MCT with a common set of values of the critical exponents. Therefore it provides

a robust determination of such values, and in particular of the exponent parameter

λ = 0.90 from which the rest of the exponents are derived through Eqs. (3) and (4). This

value of λ is unusually large, as compared to those typical of one-component systems,

as monodisperse hard spheres [36] (λ = 0.74), simplified models of orthoterphenyl [39]

(λ = 0.76), silica [48] (λ = 0.71), water [49] (λ = 0.78), or bead-spring homopolymers

[50] (λ = 0.72). In the following subsection we discuss the consequences of the large

value of λ here obtained.

6. Dynamics of the fast component in the blend

Now we analyze the dynamics of the fast B-component. Fig. 9a shows simulation

results for the intrachain coherent correlator, F chain
BB (q, t), at temperature T = 0.4. As

previously reported in Ref. [14] for the total density-density correlator FBB(q, t), a

concave-to-convex crossover is observed by varying the wave vector. For intermediate

values of the latter, a purely logarithmic decay occurs over more than three time decades.

Following a procedure analogous to that of Ref. [14], we have analyzed the decay of

F chain
BB (q, t) in terms of a logarithmic expansion,

F chain
BB (q, t) = f c

q −Hq ln(t/τσ) +H(2)
q ln2(t/τσ) +O[ln3(t/τσ)], (5)

with τσ ∼ tσ, instead of the von Schweidler series (1) used for the A-monomers (we will

discuss this point below). Within the framework of MCT, logarithmic expansions of

dynamic correlators are associated to the presence of a nearby higher-order transition

[17, 18, 19]. The latter is characterized by a value of the exponent parameter λ = 1,

though analogous predictions are expected for sufficiently large values λ → 1− as the

one here obtained, λ = 0.90 (see Section 5). Eq. (5) provides a good description of

the decay of correlators displayed in Fig. 9a. Analogous fits are shown in Fig. 9b for

the orientational correlators C
(b)B
n (t) of the bond vector, evaluated for different values

of n. In this case the validity of the logarithmic expansion is observed, at the same

temperature, over a shorter time interval. Fig. 10 shows the values of the coefficients

f c
q , Hq, and H

(2)
q obtained from the corresponding fits of F chain

BB (q, t) at two different

temperatures (T = 0.4 and T = 0.5). The term f c
q is the critical non-ergodicity

parameter, which is associated to the transition point. Therefore its values at different

wave vectors must not depend on the state point at which they are obtained as fit

parameters. This is confirmed by the numerical values displayed in Fig. 10a. According

to MCT, the prefactor Hq is factorized as the product of two terms. One of them only
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Figure 9. Panel (a): Symbols correspond, for different wave vectors, to intrachain

coherent correlators for B-B pairs, F chain
BB (q, t), at T = 0.4. Lines are fits to the

logarithmic expansion (5). Panel (b): As panel (a) for the angular correlators C
(b)B
n (t)

of the bond vector of the B-chains.

depends on the state point and the other one on the wave vector [19]. Therefore the

values ofHq evaluated at different state points must obey scaling behaviour. This feature

is also confirmed by data in Fig. 10b. Also in agreement with MCT expectations [19],

the obtained values of the second prefactor H
(2)
q are smaller than Hq and uncompatible

with scaling behaviour (see Fig. 10c).

Results presented in Figs. 9 and 10 support the similar analysis performed in Ref.

[14] for density-density correlations of the B-monomers, FBB(q, t). It must be stressed

that the choice of Eq. (5) for describing relaxation of correlators for B-monomers is

not, in principle, in contradiction with the description of the same correlators for the

A-monomers in terms of the power-law series (1). Both equations are series expansions

whose convergence depends on the analyzed region of the control parameter space. For

the case of higher-order transitions (λ = 1), or more generally for transitions with

λ → 1−, there are q-dependent paths in the control parameter space where the series

(5) is rapidly convergent. In particular for each wave vector there are optimal paths

where H
(2)
q = 0. Along these paths the corresponding correlator will exhibit a purely

logarithmic decay [19]. Moreover, by properly tuning the control parameters or the

wave vector, it is possible to change the signus of H
(2)
q and, as a consequence, inducing

a concave-to-convex crossover in the shape of the decay [19], as observed in Fig. 9.

Since from the analysis of dynamic correlators for the A-monomers we have determined

a value λ = 0.90, it might be expected that such correlators will exhibit such features

at some state point. Indeed, they are observed at higher temperatures, as shown in Fig.

11 for F chain
AA (q, t) at T = 1.0. The decay exhibits a clear concave-to-convex crossover by

tuning the wave vector. Logarithmic relaxation covers two time decades for q ≈ 5.2.

The fact that features associated to nearby higher-order MCT transitions are

observed for the A- and the B-component at very different temperatures must be

commented. As mentioned above, the optimal paths in the control parameter space
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for the observation of logarithmic relaxation are different for each correlator [19]. The

location of these paths is controlled by static correlations [19], which in the present

case are very different for the A- and the B-monomers (see Fig. 1). This difference

might explain why anomalous relaxation for both types of monomers is observed at

very different temperatures. Unless one moves close to the optimal path in the control

parameter space — which usually involves a simultaneous variation of several control

parameters [17, 19]— logarithmic relaxation vanishes by decreasing temperature, and a

standard two-step decay is recovered (see Ref. [21] for an illustrative example). This

seems to be the case of correlators for the A-monomers, which at low temperature are

well described by the von Schweidler power-law series (1). A similar result has also been

observed for mixtures of large and small non-bonded particles [23]. Still, a satisfactory

answer to this point can only be obtained by solving the MCT equations for this system.

Fig.12 displays for the B-chains at T = 0.4, results for the density self-correlators,

F s
B(q, t). A reliable fit (over more than one time decade) of the corresponding decays to

Eq. (1) — with any common exponent b for all wave vectors — or (5) was not possible.

Similar tests were also unsuccesful for correlators probing reorientations of chain end-

to-end vectors, C
(e)B
n (t), and relaxation of Rouse modes, ΦB

pp(t), of the B-chains. The

reason for the apparent failure for the B-chains, or at least limited range of validity, of the

former equations for these correlators remains to be understood. It might be that this

feature is connected to a non-universal character of the asymptotic expansions (1), (5) for

binary mixtures with very different time scales for their respective density fluctuations,

and that despite this non-universality, MCT can still reproduce the behaviour of the

mentioned correlators for the B-chains. It might either be related to the presence of

hopping events intervening in self-motions of the B-monomers (see below). As we argue
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in the following, there are results in the literature that support these possibilities.

Numerical solutions of the MCT equations have been recently presented for sodium

silicate melts and compared with simulation results [51]. In these systems the fast

sodium atoms and the slow silica matrix exhibit a strong time scale separation similar

to that observed here for the A- and B-chains [51, 52]. Though an analysis of density-

density correlators for the different atomic species, as well as of self-correlators for silicon

and oxygen, have provided a consistent test of MCT predictions with a common set of

dynamic exponents [52], self-correlators F s(q, t) of the sodium atoms do not show [52],

as in the present case, a reliable time interval for apparent validity of Eqs. (1) or (5).

Still, the corresponding numerical solutions of MCT equations reported in Ref. [51]

do reproduce the qualitative behaviour of F s(q, t) for the sodium atoms. In particular,

MCT gives account for the unusual time scale separation between self- and collective

density correlators which is observed for the sodium atoms. This feature is assigned

[52, 53, 54, 55, 56] to preferential diffusion along a long-living structure of channels

induced by the much slower relaxation of the silica matrix, which leads, for the alkali

ions, to a fast decay of self-correlations as compared to collective correlations.

Fig. 12 shows a comparison between self- and intrachain coherent correlators for

the B-chains at T = 0.4. Both correlators only converge to each other in the limit of

large-q. Since, due to the low concentration of the B-component, intrachain coherent

correlators for the B-chains exhibit only small differences (not shown) with density-

density correlators for all the B-B pairs, the large time scale separation between F s
B(q, t)

and F cha
BB (q, t) presented in Fig. 12 is a feature analogous to that above commented for

alkali ions in silica matrices [52]. Indeed, following a procedure similar to that presented

in Ref. [53] for the sodium atoms, we have determined a similar structure of channels

for preferential motion of the B-chains. We have divided the simulation box in cubic

subcells of size ≈ σ3
BB and computed, for a trajectory of the system, the number of

times each subcell is visited by a B-monomer. Fig. 13 displays, at T = 0.5, the NBN

(a number equal to that of B-monomers) most visited subcells for a simulation time

t = 5 × 104. The latter is much longer than the time for structural relaxation of the

B-monomers at that temperature As shown in Fig. 13, the mentioned subcells are not

randomly distributed but form connected clusters, in analogy with results reported in

[53] for sodium in silica matrices.

In Fig. 13 we also display the initial and final configuration of the B-monomers

for the mentioned simulation interval t = 5× 104 used for the computation of the most

visited subcells. As expected (t is much longer than the structural relaxation time for B-

monomers) both configurations are fully decorrelated. Therefore the mentioned channel

structure is not a trivial consequence of the static correlations for the B-B pairs, which

also form a cluster structure (Fig. 2). It is instead induced by the time scale separation

of the dynamic correlations, which are much slower for the confining matrix formed by

the A-chains. The channel structure will only vanish when any region of the simulation

cell will be visited by the B-monomers with the same probability. This can only occur

at much longer times probing full structural relaxation of the A-component. A detailed
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Figure 13. Left side: Cubic boxes represent the NBN subcells (of size ≈ σ3
BB) in

the simulation box which have been visited more times by the B-monomers during a

simulation time of t = 5× 104, for T = 0.5. Right side: Initial (dark spheres) and final

(light spheres) configuration of the B-monomers for the latter simulation interval. The

same orientation of the simulation cell is used in both figures.

static and dynamic characterization of this channel structure is beyond the scope of this

article and will be presented elsewhere.

Finally, it must be mentioned that the observed decoupling between intrachain

collective and self-correlators is exhibited only by the B-chains in the blend. For

the A-chains in the blend, as well as for the homopolymers, we have observed only

small differences for the latter correlators. Decoupling between self- and collective

intrachain dynamics is indeed a rather unusual feature, at odds with expectations from

the standard Rouse model [32, 33]. This observation in the simple bead-spring blend

here investigated is supported by recent neutron scattering experiments on PEO/PMMA

at low concentration of PEO [57]. Whether numerical solutions of MCT equations are

also able, in analogy with the case of alkali ions in silica, to give account for this feature

is an opened question.

Fig. 14 shows the temperature dependence of the relaxation times for several

dynamic correlators probing relaxation of the B-component. Notations τ0.2, τ chain0.13 ,

τ s0.03, τ
b1
0.2, τ

e1
0.2, and τR1

0.2 correspond, respectively, to the correlators FBB(q, t), F
chain
BB (q, t),

F s
B(q, t), C

(b)B
1 (t), C

(e)B
1 (t), and φB

11(t). The wave vector for the first three correlators

is q = 4.6. Also included is the inverse diffusivity of the center-of-mass for the B-

chains. The set of data shown in Fig. 14 exhibits a behaviour rather different from

similar quantities for the A-chains displayed in Fig. 8. Only relaxation times for

collective density correlations, FBB(q, t) and F chain
BB (q, t), show qualitative agreement

with the MCT power-law ∝ (T − 0.37)−4.0 derived from data of the A-monomers. As

expected, deviations occur at temperatures very close to Tc. The rest of the quantities
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correlators for the B-monomers (see text for notations). The wave vector for τ0.2,

τchain0.13 , and τ s0.03 is q = 4.6. The thick and thin solid lines are fits of, respectively, τ0.2
and τchain0.13 to a MCT power law ∝ (T −Tc)

−γ , with Tc = 0.37 and γ = 4.0. The arrow

indicates the inverse value of Tc. The dashed lines are (from top to bottom) fits of

D−1
CM, τe10.2, τ

b1
0.2, and τ s0.03 to Arrhenius behavior, ∝ exp(E/T ). The activation energies

are respectively E = 3.4, 4.1, 3.8, and 5.9.

displayed in Fig. 14 are uncompatible with power-law behaviour. They show instead an

apparent Arrhenius dependence, ∝ exp(E/T ), from moderate to the lowest investigated

temperature. This feature is demostrated in Fig. 14 by the linear behaviour observed by

representing data in logarithmic scale vs. (linear) 1/T . The obtained activation energies

E vary between 3.4 for the center-of-mass diffusivity and 5.9 for the relaxation time of

density self-correlations. The observed Arrhenius behaviour suggest that strong hopping

events intervene in the structural relaxation of the B-chains, similarly to observations

for alkalin ions in silica [58]. These events seem to affect more strongly to self- than to

collective density correlations, for which a power law behaviour can be observed over

two decades in relaxation time for temperatures above Tc. It remains to be understood

whether such hopping events — which are not included in the ideal version of MCT —

are related to the mentioned reduction of the range of validity of Eqs. (1) or (5) for the

corresponding correlators. It is worth mentioning that the latter possibility might be

the case for sodium atoms in silica. Numerical solutions of the MCT equations reported

in Ref. [51], though reproducing the observed qualitative behaviour, understimate the

strength of the decay exhibited in simulations for self-correlators F s(q, t) of sodium.

Hence, the presence of hopping events presumably accelarates relaxation as compared

to theoretical predictions.

Finally, it is worthy of remark that the observed Arrhenius-like temperature

dependence for τb10.2 and τ s0.03 is consistent with experimental observations, for the fast

component, in real polymer blends with large dynamic asymmetry by, respectively,

dielectric spectroscopy [7, 8, 10] and neutron scattering [13], which probe relaxation
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times of similar dynamic correlators. Arrhenius behaviour for self-dynamics is also

observed for the case of alkali ions in silica [58] or for water reorientation in polymer

matrices [59]. This common Arrhenius-like behaviour in very different systems suggests

a universal feature for low concentrations of fast molecules in slow host media with

interconnected voids.

7. Conclusions

We have presented a computational investigation on the structural relaxation of a

simple bead-spring model for polymer blends with large dynamic asymmetry. We have

computed a large set of dynamic correlators probing relaxation of density fluctuations,

Rouse modes, and reorientation of bond and chain end-to-end vectors. Results have

been discussed within the framework of the Mode Coupling Theory (MCT) for the glass

transition. A robust test of MCT predictions has been achieved through a description

of the different analyzed correlators with a common set of dynamic exponents, though

for some correlators probing dynamics of the fast component MCT asymptotic laws are

apparently not observed. The observation of Arrhenius-like behaviour suggests that this

breakdown might be associated to strong hopping events intervening in relaxation of the

fast component.

An unusually large value of the exponent parameter λ has been obtained, close to

the upper limit (λ = 1) characteristic of higher-order MCT transitions. According to

MCT predictions, the anomalous relaxation features observed in the present system,

as logarithmic decays or concave-to-convex crossovers in density correlators, might be

associated to that underlying higher-order scenario. An investigation of the case of

extreme dilution, where each individual chain of the fast component is sorrounded

only by chains of the slow component (and where an asymptotic dynamic limit is

expected [6]), would be computationaly expensive. Still, we expect that a qualitatively

similar scenario of anomalous relaxation will be observed. Since chain connectivity will

always guarantee the presence of neighbouring monomers of the same species for a given

monomer of the fast component, coexistence of bulk-like caging and confinement for the

fast component would be present even at extreme dilution, inducing the higher-order

scenario. On the other hand, a progressive increase of the concentration of the fast

component will reduce the time scale separation (i.e., the dynamic asymmetry) between

the two components, and confinement effects will finally vanish. In that situation a

standard MCT relaxation scenario (as observed for the homopolymer case) will be

recovered. The large collection of results here presented might motivate theoretical

work on structural relaxation in polymer blends with large dynamic asymmetry, and in

particular, numerical solutions of the MCT equations to confirm the suggested higher-

order scenario.
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