12 research outputs found

    Magnetic Nanoparticles Enhanced Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Romaine Lettuce

    Get PDF
    Salmonella is one of the major foodborne pathogens responsible for many cases of illnesses, hospitalizations and deaths worldwide. Although different methods are available to timely detect Salmonella in foods, surface plasmon resonance (SPR) has the benefit of real-time detection with a high sensitivity and specificity. The purpose of this study was to develop an SPR method in conjunction with magnetic nanoparticles (MNPs) for the rapid detection of Salmonella Typhimurium. The assay utilizes a pair of well-characterized, flagellin-specific monoclonal antibodies; one is immobilized on the sensor surface and the other is coupled to the MNPs. Samples of romaine lettuce contaminated with Salmonella Typhimurium were washed with deionized water, and bacterial cells were captured on a filter membrane by vacuum filtration. SPR assays were compared in three different formats—direct assay, sequential two-step sandwich assay, and preincubation one-step sandwich assay. The interaction of flagellin and MNPs with the antibody-immobilized sensor surface were analyzed. SPR signals from a sequential two-step sandwich assay and preincubation one-step sandwich assay were 7.5 times and 14.0 times higher than the direct assay. The detection limits of the assay were 4.7 log cfu/mL in the buffer and 5.2 log cfu/g in romaine lettuce samples

    Kinetic Analysis and Epitope Mapping of Monoclonal Antibodies to Salmonella Typhimurium Flagellin Using a Surface Plasmon Resonance Biosensor

    Get PDF
    Salmonella Typhimurium is one of the leading causes of foodborne diseases worldwide. Biosensors and immunoassays utilizing monoclonal antibodies are widely used for the detection and subtyping of S. Typhimurium. However, due to insufficient information on the nature of binding with S. Typhimurium flagellin, the selection of appropriate antibodies for assay development is a cumbersome task. Hence, we aimed to compare the binding kinetics of a panel of monoclonal antibodies and their relative binding sites to flagellin antigen using a surface plasmon resonance biosensor. Initially, the flagellin was captured on the sensor surface through an immobilized anti-flagellin antibody. The interactions of different concentrations of monoclonal antibodies to flagellin were determined, and binding curves were fitted using 1:1 bio-interaction model to calculate the kinetic parameters. For epitope mapping, pairwise comparisons were completed to determine the binding inhibition of each paired combination of monoclonal antibodies. It was found that these monoclonal antibodies differed significantly (p \u3c 0.05) in association rate, dissociation rate, and equilibrium dissociation constants. Of the five monoclonal antibodies, only two interfered with the binding of each other. Four distinct epitopes located within a 23 kDa domain of flagellin were identified. Findings from this study provide crucial information needed for the further development and optimization of biosensors and other immunoassays for the detection and subtyping of Salmonella

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Magnetic Nanoparticles Enhanced Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Romaine Lettuce

    No full text
    Salmonella is one of the major foodborne pathogens responsible for many cases of illnesses, hospitalizations and deaths worldwide. Although different methods are available to timely detect Salmonella in foods, surface plasmon resonance (SPR) has the benefit of real-time detection with a high sensitivity and specificity. The purpose of this study was to develop an SPR method in conjunction with magnetic nanoparticles (MNPs) for the rapid detection of Salmonella Typhimurium. The assay utilizes a pair of well-characterized, flagellin-specific monoclonal antibodies; one is immobilized on the sensor surface and the other is coupled to the MNPs. Samples of romaine lettuce contaminated with Salmonella Typhimurium were washed with deionized water, and bacterial cells were captured on a filter membrane by vacuum filtration. SPR assays were compared in three different formats—direct assay, sequential two-step sandwich assay, and preincubation one-step sandwich assay. The interaction of flagellin and MNPs with the antibody-immobilized sensor surface were analyzed. SPR signals from a sequential two-step sandwich assay and preincubation one-step sandwich assay were 7.5 times and 14.0 times higher than the direct assay. The detection limits of the assay were 4.7 log cfu/mL in the buffer and 5.2 log cfu/g in romaine lettuce samples

    Detection of Salmonella Typhimurium in Romaine Lettuce Using a Surface Plasmon Resonance Biosensor

    Get PDF
    Leafy vegetables have been associated with high-profile outbreaks causing severe illnesses. Timely and accurate identification of potential contamination is essential to ensure food safety. A surface plasmon resonance (SPR) assay has been developed for the detection of Salmonella Typhimurium in leafy vegetables. The assay utilizes a pair of well characterized monoclonal antibodies specific to the flagellin of S. Typhimurium. Samples of romaine lettuce contaminated with S. Typhimurium at different levels (between 0.9 and 5.9 log cfu/g) were pre-enriched in buffered peptone water. Three SPR assay formats, direct assay, sequential two-step sandwich assay, and pre-incubation one-step sandwich assay were evaluated. All three assay formats detect well even at a low level of contamination (0.9 log cfu/g). The SPR assay showed a high specificity for the detection of S. Typhimurium in the presence of other commensal bacteria in the romaine lettuce samples. The results also suggested that further purification of flagellin from the sample preparation using immunomagnetic separation did not improve the detection sensitivity of the SPR assay. The functional protocol developed in this study can be readily used for the detection of S. Typhimurium in leafy vegetables with high sensitivity and specificity

    Kinetic Analysis and Epitope Mapping of Monoclonal Antibodies to Salmonella Typhimurium Flagellin Using a Surface Plasmon Resonance Biosensor

    Get PDF
    Salmonella Typhimurium is one of the leading causes of foodborne diseases worldwide. Biosensors and immunoassays utilizing monoclonal antibodies are widely used for the detection and subtyping of S. Typhimurium. However, due to insufficient information on the nature of binding with S. Typhimurium flagellin, the selection of appropriate antibodies for assay development is a cumbersome task. Hence, we aimed to compare the binding kinetics of a panel of monoclonal antibodies and their relative binding sites to flagellin antigen using a surface plasmon resonance biosensor. Initially, the flagellin was captured on the sensor surface through an immobilized anti-flagellin antibody. The interactions of different concentrations of monoclonal antibodies to flagellin were determined, and binding curves were fitted using 1:1 bio-interaction model to calculate the kinetic parameters. For epitope mapping, pairwise comparisons were completed to determine the binding inhibition of each paired combination of monoclonal antibodies. It was found that these monoclonal antibodies differed significantly (p < 0.05) in association rate, dissociation rate, and equilibrium dissociation constants. Of the five monoclonal antibodies, only two interfered with the binding of each other. Four distinct epitopes located within a 23 kDa domain of flagellin were identified. Findings from this study provide crucial information needed for the further development and optimization of biosensors and other immunoassays for the detection and subtyping of Salmonella

    A Decade of Changes in Family Caregivers' Preferences for Life-Sustaining Treatments for Terminally Ill Cancer Patients at End of Life in the Context of a Family-Oriented Society

    No full text
    [[abstract]]Context Temporal changes in different family caregiver cohorts' preferences for life-sustaining treatments (LSTs) at end of life (EOL) have not been examined nor have the concept of whether caregivers' LST preferences represent a homogeneous or heterogeneous construct. Furthermore, LST preferences are frequently assessed from multiple treatments, making clinical applications difficult/infeasible. Objectives To identify parsimonious patterns and changes in the pattern of LST preferences for two independent cohorts of family caregivers for terminally ill Taiwanese cancer patients. Methods Preferences for cardiopulmonary resuscitation, intensive care unit care, cardiac massage, intubation with mechanical ventilation, intravenous nutritional support, tube feeding, and dialysis were assessed among 1617 and 2056 family caregivers in 2003–2004 and 2011–2012, respectively. Patterns and changes in LST preferences were examined by multigroup latent class analysis. Results Five distinct classes were identified: uniformly preferring, uniformly rejecting, uniformly uncertain, and favoring nutritional support but rejecting or uncertain about other treatments. Class probability significantly decreased from 29.3% to 23.7% for the uniformly rejecting class, remained largely unchanged for the uniformly preferring (16.9%–18.6%), and favoring nutritional support but rejecting (37.1%–37.5%) or uncertain about other treatments (8.0%–10.4%) classes, but significantly increased from 7.0% to 11.5% for the uniformly uncertain class over time. Conclusion Family caregivers' LST preferences for terminally ill cancer patients are a heterogeneous construct and shifted from uniformly rejecting all LSTs toward greater uncertainty. Surrogate EOL-care decision making may be facilitated by earlier and thorough assessments of caregivers' LST preferences and tailoring interventions to the unique needs of caregivers in each class identified in this study

    Prime Focus Spectrograph (PFS): a next-generation facility instrument of the Subaru telescope has started coming

    No full text
    PFS (Prime Focus Spectrograph) is a next generation facility instruments on the Subaru telescope. 2394 reconfigurable fibers will be distributed in the 1.3 degree field of view, and the spectrograph has 3 arms (blue, red, and near-infrared) to simultaneously observe spectra from 380nm to 1260nm in one exposure. In 2018, Metrology Camera System was delivered to the observatory and successfully tested on the telescope. Now in Nov 2019 the first spectrograph module with visible cameras is being shipped to Hawaii. The other subsystems are actively being developed to start on-sky engineering observation in 2020, and science operation in 2022. In this contribution, an overview of the current status and future perspectives will be presented

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase

    No full text
    International audiencePFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru's prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation
    corecore