198 research outputs found

    Direct Visualization of Laser-Driven Focusing Shock Waves

    Full text link
    Cylindrically or spherically focusing shock waves have been of keen interest for the past several decades. In addition to fundamental study of materials under extreme conditions, cavitation, and sonoluminescence, focusing shock waves enable myriad applications including hypervelocity launchers, synthesis of new materials, production of high-temperature and high-density plasma fields, and a variety of medical therapies. Applications in controlled thermonuclear fusion and in the study of the conditions reached in laser fusion are also of current interest. Here we report on a method for direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample. The 2D focusing of the shock front is the consequence of spatial shaping of the laser shock generation pulse into a ring pattern. A substantial increase of the pressure at the convergence of the acoustic shock front is observed experimentally and simulated numerically. Single-shot acquisitions using a streak camera reveal that at the convergence of the shock wave in liquid water the supersonic speed reaches Mach 6, corresponding to the multiple gigapascal pressure range 30 GPa

    Beyond the veil: Inner horizon instability and holography

    Full text link
    We show that scalar perturbations of the eternal, rotating BTZ black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane wave modes have a divergent stress tensor at the event horizon, but suitable wavepackets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wavepackets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness and positive energy. Due to a focusing effect, regular wavepackets nevertheless have a divergent stress-energy at the inner horizon, signaling an instability. This instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual CFT expectation values in which the analytic behavior of wavepackets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde

    Conformal geodesics in spherically symmetric vacuum spacetimes with cosmological constant

    Get PDF
    An analysis of conformal geodesics in the Schwarzschild-de Sitter and Schwarzschild-anti de Sitter families of spacetimes is given. For both families of spacetimes we show that initial data on a spacelike hypersurface can be given such that the congruence of conformal geodesics arising from this data cover the whole maximal extension of canonical conformal representations of the spacetimes without forming caustic points. For the Schwarzschild-de Sitter family, the resulting congruence can be used to obtain global conformal Gaussian systems of coordinates of the conformal representation. In the case of the Schwarzschild-anti de Sitter family, the natural parameter of the curves only covers a restricted time span so that these global conformal Gaussian systems do not exist.Comment: 51 pages, 12 figures. Minor changes. File updated. To appear in CQ

    On Charged Black Holes in Anti-de Sitter Space

    Full text link
    We study the region inside the event horizon of charged black holes in five dimensional asymptotically anti-de Sitter space, using as a probe two-sided correlators which are dominated by spacelike geodesics penetrating the horizon. The spacetimes we investigate include the Reissner-Nordstrom black hole and perturbations thereof. The perturbed spacetimes can be found exactly, enabling us to perform a local scan of the region between the inner and outer horizons. Surprisingly, the two-sided correlators we calculate seem to be geometrically protected from the instability of the inner horizon.Comment: 1+37 pages, 20 ps and eps figures, LaTeX. References added and changes made to section

    The geodesic structure of the Schwarzschild Anti-de Sitter black hole

    Full text link
    In the present work we found the geodesic structure of an AdS black hole. By means of a detailed analyze of the corresponding effective potentials for particles and photon, we found all the possible motions which are allowed by the energy levels. Radial and non radial trajectories were exactly evaluated for both geodesics. The founded orbits were plotted in order to have a direct visualization of the allowed motions. We show that the geodesic structure of this black hole presents new type of motions not allowed by the Schwarzschild spacetime.Comment: 17 pages, 11 figure

    Drag Prediction Using Adaptive Discontinuous Finite Elements

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106502/1/AIAA2013-51.pd

    Real time response on dS_3: the Topological AdS Black Hole and the Bubble

    Full text link
    We study real time correlators in strongly coupled N=4 supersymmetric Yang-Mills theory on dS_3 x S^1, with antiperiodic boundary conditions for fermions on the circle. When the circle radius is larger than a critical value, the dual geometry is the so-called "topological AdS_5 black hole". Applying the Son- Starinets recipe in this background we compute retarded glueball propagators which exhibit an infinite set of poles yielding the quasinormal frequencies of the topological black hole. The imaginary parts of the propagators exhibit thermal effects associated with the Gibbons-Hawking temperature due to the cosmological horizon of the de Sitter boundary. We also obtain R-current correlators and find that after accounting for a small subtlety, the Son-Starinets prescription yields the retarded Green's functions. The correlators do not display diffusive behaviour at late times. Below the critical value of the circle radius, the topological black hole decays to the AdS_5 "bubble of nothing". Using a high frequency WKB approximation, we show that glueball correlators in this phase exhibit poles on the real axis. The tunnelling from the black hole to the bubble is interpreted as a hadronization transition.Comment: 52 pages, 11 figures, typos corrected, references adde

    How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array

    Full text link
    Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions, which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the supression of topological superconductivity by disorder. We show that Majorana fermions protected by a robust topological gap can occur at the ends of a chain of quantum dots connected by s-wave superconductors. In the appropriate parameter regime, we establish that the quantum dot/superconductor system is equivalent to a 1D Kitaev chain, which can be tuned to be in a robust topological phase with Majorana end modes even in the case where the quantum dots and superconductors are both strongly disordered. Such a spin-orbit coupled quantum dot - s-wave superconductor array provides an ideal experimental platform for the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to include more general proof for localized Majorana fermion
    • …
    corecore