236 research outputs found
Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding
Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike
Modified Alvarado Scoring System as a diagnostic tool for Acute Appendicitis at Bugando Medical Centre, Mwanza, Tanzania
<p>Abstract</p> <p>Background</p> <p>Decision-making in patients with acute appendicitis poses a diagnostic challenge worldwide, despite much advancement in abdominal surgery. The Modified Alvarado Scoring System (MASS) has been reported to be a cheap and quick diagnostic tool in patients with acute appendicitis. However, differences in diagnostic accuracy have been observed if the scores were applied to various populations and clinical settings. The purpose of this study was to evaluate the diagnostic value of Modified Alvarado Scoring System in patients with acute appendicitis in our setting.</p> <p>Methods</p> <p>A cross-sectional study involving all patients suspected to have acute appendicitis at Bugando Medical Centre over a six-month period between November 2008 and April 2009 was conducted. All patients who met the inclusion criteria were consecutively enrolled in the study. They were evaluated on admission using the MASS to determine whether they had acute appendicitis or not. All patients underwent appendicectomy according to the hospital protocol. The decision to operate was the prerogative of the surgeon or surgical resident based on overall clinical judgment and not the MASS. The diagnosis was confirmed by histopathological examination. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software.</p> <p>Results</p> <p>A total number of 127 patients were studied. Their ages ranged from eight to 76 years (mean 29.64 ± 12.97). There were 37 (29.1%) males and 90 (70.9%) females (M: F = 1:2.4). All patients in this study underwent appendicectomy. The perforation rate was 9.4%. Histopathological examination confirmed appendicitis in 85 patients (66.9%) and the remaining 42 patients had normal appendix giving a negative appendicectomy rate of 33.1% (26.8% for males and 38.3% for females). The sensitivity and specificity of MASS in this study were 94.1% (males 95.8% and females 88.3%) and 90.4% (males 92.9% and females 89.7%) respectively. The Positive Predictive Value and Negative Predictive Value were 95.2% (males 95.5% and females 90.6%) and 88.4% (males 89.3% and females 80.1%) respectively. The accuracy of MASS was 92.9% (males 91.5% and females 87.6%).</p> <p>Conclusion</p> <p>The study shows that use of MASS in patients suspected to have acute appendicitis provides a high degree of diagnostic accuracy and can be employed at Bugando Medical Centre to improve the diagnostic accuracy of acute appendicitis and subsequently reduces negative appendicectomy and complication rates. However, additional investigations may be required to confirm the diagnosis in case of atypical presentation.</p
Influence of dental metallic artifact from multislice CT in the assessment of simulated mandibular lesions
OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.CNPqFAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES
Modular Mass Spectrometric Tool for Analysis of Composition and Phosphorylation of Protein Complexes
The combination of high accuracy, sensitivity and speed of single and multiple-stage mass spectrometric analyses enables the collection of comprehensive sets of data containing detailed information about complex biological samples. To achieve these properties, we combined two high-performance matrix-assisted laser desorption ionization mass analyzers in one modular mass spectrometric tool, and applied this tool for dissecting the composition and post-translational modifications of protein complexes. As an example of this approach, we here present studies of the Saccharomyces cerevisiae anaphase-promoting complexes (APC) and elucidation of phosphorylation sites on its components. In general, the modular concept we describe could be useful for assembling mass spectrometers operating with both matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) ion sources into powerful mass spectrometric tools for the comprehensive analysis of complex biological samples
Tandem mass spectrometry data quality assessment by self-convolution
<p>Abstract</p> <p>Background</p> <p>Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on <it>de novo </it>sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified.</p> <p>Results</p> <p>The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores.</p> <p>Conclusion</p> <p>We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well and could potentially be used as a pre-processing for all mass spectrometry based protein identification tools.</p
Proteogenomic Analysis of Chemo-Refractory High-Grade Serous Ovarian Cancer
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities
An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer
Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis
The co-receptor signaling model of HIV-1 pathogenesis in peripheral CD4 T cells
HIV-mediated CD4 depletion is the hallmark of AIDS and is the most reliable predictor of disease progression. While HIV replication is associated with CD4 depletion in general, plasma viremia by itself predicts the rate of CD4 loss only minimally in untreated patients. To resolve this paradox, I hypothesize the existence of a subpopulation of R5X4-signaling viruses. I also suggest that the gradual evolution and emergence of this subpopulation are largely responsible for the slow depletion of peripheral CD4 T cells
- …