503 research outputs found

    Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand

    Get PDF
    The macrophage and epithelial cell mannose receptor (MR) binds carbohydrates on foreign and host molecules. Two portions of MR recognize carbohydrates: tandemly arranged C-type lectin domains facilitate carbohydrate-dependent macrophage uptake of infectious organisms, and the NH2-terminal cysteine-rich domain (Cys-MR) binds to sulfated glycoproteins including pituitary hormones. To elucidate the mechanism of sulfated carbohydrate recognition, we determined crystal structures of Cys-MR alone and complexed with 4-sulfated-N-acetylgalactosamine at 1.7 and 2.2 Å resolution, respectively. Cys-MR folds into an approximately three-fold symmetric β-trefoil shape resembling fibroblast growth factor. The sulfate portions of 4-sulfated-N-acetylgalactosamine and an unidentified ligand found in the native crystals bind in a neutral pocket in the third lobe. We use the structures to rationalize the carbohydrate binding specificities of Cys-MR and compare the recognition properties of Cys-MR with other β-trefoil proteins

    High temperature optical absorption investigation into the electronic transitions in sol–gel derived C12A7 thin films

    Get PDF
    Optical absorption into 6 mm thick sol–gel derived films, annealed at 1300 °C of 12CaO·7Al2O3 calcium aluminate binary compound on MgO〈100〉 single crystal substrates was studied at temperatures ranging from room temperature to 300 °C. Experimental data were analysed in both Tauc and Urbach regions. The optical band gap decreased from 4.088 eV at 25 °C to 4.051 eV at 300 °C, while Urbach energy increased from 0.191 eV at 25 °C to 0.257 eV at 300 °C. The relationship between the optical band gap and the Urbach energy at different temperatures showed an almost linear relationship from which the theoretical values of 4.156 and 0.065 eV were evaluated for the band gap energy and Urbach energy of a 12CaO·7Al2O3 crystal with zero structural disorder at 0 K

    O-Glycome beam search arrays for carbohydrate ligand discovery

    No full text
    O-glycosylation is a post-translational modification of proteins crucial to molecular mechanisms in health and disease. O-glycans are typically highly heterogeneous. The involvement of specific O-glycan sequences in many bio-recognition systems is yet to be determined due to a lack of efficient methodologies. We describe here a targeted microarray approach: O-glycome beam search that is both robust and efficient for O-glycan ligand-discovery. Substantial simplification of the complex O-glycome profile and facile chromatographic resolution is achieved by arraying O-glycans as branches, monitoring by mass spectrometry, focusing on promising fractions, and on-array immuno-sequencing. This is orders of magnitude more sensitive than traditional methods. We have applied beam search approach to porcine stomach mucin and identified extremely minor components previously undetected within the O-glycome of this mucin that are ligands for the adhesive proteins of two rotaviruses. The approach is applicable to O-glycome recognition studies in a wide range of biological settings to give insights into glycan recognition structures in natural microenvironments

    CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis

    Get PDF
    The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8(+) T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8(+) T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8(+) T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8(+) T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8(+) T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation

    Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies

    Get PDF
    Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074–like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a “liganded” PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain

    High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    Get PDF
    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials
    corecore