710 research outputs found

    Brook: A Hydrologic Simulation Model for Eastern Forests

    Get PDF

    Simulating spatial and temporal variation of corn canopy temperature during an irrigation cycle

    Get PDF
    The canopy air temperature difference (delta T) which provides an index for scheduling irrigation was examined. The Monteith transpiration equation was combined with both uptake from a single layered root zone and change in internal storage of the plant and the continuity equation for water flux in the soil plant atmosphere system was solved. The model indicates that both daily total transpiration and soil induced depression of plant water potential may be inferred from mid-day delta T. It is suggested that for the soil plant weather data used in the simulation, either a mid day spatial variability of about 0.8K in canopy temperatures or a field averaged delta T of 2 to 4K may be a suitable criterion for irrigation scheduling

    FREQUENCY OF AGRICULTURAL AND FOREST DROUGHT IN NEW HAMPSHIRE: 1926 - 1975

    Get PDF

    Tree Water Stress in Relation to Water Yield in A Hardwood Forest

    Get PDF

    Modeling physical and chemical climate of the northeastern United States for a geographic information system

    Get PDF
    A model of physical and chemical climate was developed for New York and New England that can be used in a GIs for integration with ecosystem models. The variables included are monthly average maximum and minimum daily temperatures, precipitation, humidity, and solar radiation, as well as annual atmospheric deposition of sulfur and nitrogen. Equations generated from regional data bases were combined with a digital elevation model of the region to generate digital coverages of each variable

    THE EFFECT OF FOREST CLEARCUTTING IN NEW ENGLAND ON STREAM-WATER CHEMISTRY

    Get PDF

    The Asymptotics of Wilkinson's Iteration: Loss of Cubic Convergence

    Full text link
    One of the most widely used methods for eigenvalue computation is the QRQR iteration with Wilkinson's shift: here the shift ss is the eigenvalue of the bottom 2×22\times 2 principal minor closest to the corner entry. It has been a long-standing conjecture that the rate of convergence of the algorithm is cubic. In contrast, we show that there exist matrices for which the rate of convergence is strictly quadratic. More precisely, let TXT_X be the 3×33 \times 3 matrix having only two nonzero entries (TX)12=(TX)21=1(T_X)_{12} = (T_X)_{21} = 1 and let TLT_L be the set of real, symmetric tridiagonal matrices with the same spectrum as TXT_X. There exists a neighborhood UTLU \subset T_L of TXT_X which is invariant under Wilkinson's shift strategy with the following properties. For T0UT_0 \in U, the sequence of iterates (Tk)(T_k) exhibits either strictly quadratic or strictly cubic convergence to zero of the entry (Tk)23(T_k)_{23}. In fact, quadratic convergence occurs exactly when limTk=TX\lim T_k = T_X. Let XX be the union of such quadratically convergent sequences (Tk)(T_k): the set XX has Hausdorff dimension 1 and is a union of disjoint arcs XσX^\sigma meeting at TXT_X, where σ\sigma ranges over a Cantor set.Comment: 20 pages, 8 figures. Some passages rewritten for clarit

    Predicting the effects of climate change on water yield and forest production in the northeastern United States

    Get PDF
    Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region

    Regularity of higher codimension area minimizing integral currents

    Full text link
    This lecture notes are an expanded version of the course given at the ERC-School on Geometric Measure Theory and Real Analysis, held in Pisa, September 30th - October 30th 2013. The lectures aim to explain the main steps of a new proof of the partial regularity of area minimizing integer rectifiable currents in higher codimension, due originally to F. Almgren, which is contained in a series of papers in collaboration with C. De Lellis (University of Zurich).Comment: This text will appear in "Geometric Measure Theory and Real Analysis", pp. 131--192, Proceedings of the ERC school in Pisa (2013), L. Ambrosio Ed., Edizioni SNS (CRM Series

    The prescribed mean curvature equation in weakly regular domains

    Get PDF
    We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a \textit{generalized Gauss-Green theorem} based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a \textit{weak Young's law} for (Λ,r0)(\Lambda,r_{0})-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector fields have been now extended and moved in a self-contained paper available at: arXiv:1708.0139
    corecore