405 research outputs found

    Reconfigurable phase-change optical metasurfaces: novel design concepts to practicable devices

    Get PDF
    Optical metasurfaces have been proven to be capable of controlling amplitude, phase and polarization of optical beams without the need of bulky geometries, making them really attractive for the development of compact photonic devices. Recently, their combination with chalcogenide phase-change materials (traditionally employed in non-volatile optical and electrical memories), whose refractive index can be reversibly and repeatedly controlled, has been proposed to yield low power consumption tunable metasurfaces having several functionalities in a single device. However, despite phase-change memories are commercially available since various decades now, the unification of phase-change materials with metasurfaces towards real life applications is becoming a formidable task, mainly due to the several engineering branches involved in this technology, which sometimes compromise each other in a non-trivial way. This includes thermo/optical, thermo/electric, and chemical incompatibilities which are typically not taken into account by researchers working in the field, resulting in devices having exciting reconfigurable properties, but at the same time, lack of practicability. This thesis is therefore dedicated to the development of novel phase-change metasurface architectures which could partially or totally address such engineering problems. Particular emphasis has been put in the realization of reconfigurable metasurfaces for active wavefront control, as such a functionality remains relatively unexplored. The first part of this thesis focuses in the first experimental demonstration of active, reconfigurable non-mechanical beam steering devices working the near-infrared. This was achieved via integration of ultra-thin films of chalcogenide phase-change materials (in this case, the widely employed alloy Ge2Sb2Te5) within the body of a dielectric spacer in a plasmonic metal/insulator/metal metasurface architecture. Active, and optically reversible beam steering between two different angles with efficiencies up to 40% were demonstrated. The second part of this work shows the work carried out in metal-free metasurfaces as a way to manipulate optical beams with high efficiency in both transmission and/or reflection. This was achieved via combination of all-dielectric silicon nanocylinders with deeply-subwavelenght sized Ge2Sb2Te5 inclusions. By strategic placement of the phase-change inclusions in the regions of high electric field density, independent and active control of the metasuface resonances is demonstrated, with modulations depths as high as 70% and 65% in reflection and transmission respectively. Multilevel, and fully reversible optically-induced switching of the phasechange layer is also reported, with up to 11 levels of tunability over 8 switching cycles. Finally, the last section of this thesis introduces the concept of hybrid dielectric/plasmonic phase-change metasurfaces having key functional benefits when compared to both purely dielectric and plasmonic approaches. The proposed architectures showed great versatility in terms of both active amplitude and phase control, offering the possibility of designing devices for different purposes (i.e. such as active absorbers/modulators or beam steerers with enhanced efficiency) employing the same unit-cell configuration with minor geometry re-optimizations. Initial device experimental demonstrations of such an approach are discussed, as well as their potential in terms of delivering in-situ electrical switching capabilities using a metallic ground plane as a resistive heater.Engineering and Physical Sciences Research Council (EPSRC

    A novel selective 11b-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis.

    Get PDF
    Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11b-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11b-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1.0 mM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11b-HSD1 inhibitor PF-877423. 11b-HSD1 mRNA expression increased across adipocyte differentiation (P!0.001, nZ4), which was paralleled by an increase in 11b-HSD1 oxo-reductase activity (from nil on day 0 to 5.9G1.9 pmol/mg per h on day 16,P!0.01, nZ7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P!0.001) and glycerol-3-phosphate dehydrogenase 47-fold (P!0.001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11b-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11b-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS

    Phase-change metasurfaces for dyamic beam steering and beam shaping in the infrared

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordWe present novel phase-change material based metasurfaces for dynamic, recnofigurable and efficient wavefront shaping in the infrared spectrum. Dynamic control and reconfigurability was obtained by incorporating an ultra-thin layer of the widely-used phase change material Ge2Sb2Te5. Our approach exploits hybrid dielectic/plasmonic resonances to achieve local (subwavelength) phase control of light with low losses. A full 2π optical phase coverage was achieved with this approach, which allows for a wide flexibility in terms of realizable designs. To illustrate this concept, dynamic beam steering devices and reconfigurable planar focusing mirrors (both operating at optical telecommunications wavelengths) and their performance investigated. Absolute efficiencies up to 65% are achieved, significantly higher than the efficiencies of more commonly reported plasmonic-based phase-change metasurfaces.CDW acknowledges funding via the US Naval Research Laboratories ONRG programme (#N62909-16-1-2174) and the EPSRC ChAMP and WAFT grants (EP/M015130/1 and EP/M015173/1). CRdeG acknowledges funding via the EPSRC CDT in Metamaterials (EP/L015331/1). CRdeG Acknowledges Joaquin Faneca-Ruedas and Dr Anna Baldycheva

    Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells

    Get PDF
    AbstractWe have studied CFTR-Cl− channels in non-CF CAPAN-1 and in CFTR-transfected CFPAC-PLJ-CFTR-6 epithelial cells from human pancreas. Theophylline and IBMX induced the opening of cell-attached CFTR-Cl− channels. Theophylline, IBMX and the alkaline phosphatase (AP) inhibitor levamisole enhanced the activity of excised channels and reduced by 70–75% the apical membrane-associated APs activity. Okadaic acid had no effect on APs and channel activities. A polyclonal anti-alkaline phosphatase antibody (which detected apical APs) reduced APs activity and activated quiescent excised chloride channels. These results suggest that CFTR channels may be regulated by membrane-bound phosphatases
    corecore