2,496 research outputs found

    Magnetic Monopoles, Electric Neutrality and the Static Maxwell-Dirac Equations

    Full text link
    We study the full Maxwell-Dirac equations: Dirac field with minimally coupled electromagnetic field and Maxwell field with Dirac current as source. Our particular interest is the static case in which the Dirac current is purely time-like -- the "electron" is at rest in some Lorentz frame. In this case we prove two theorems under rather general assumptions. Firstly, that if the system is also stationary (time independent in some gauge) then the system as a whole must have vanishing total charge, i.e. it must be electrically neutral. In fact, the theorem only requires that the system be {\em asymptotically} stationary and static. Secondly, we show, in the axially symmetric case, that if there are external Coulomb fields then these must necessarily be magnetically charged -- all Coulomb external sources are electrically charged magnetic monopoles

    Surface characterization of p-type point contact germanium detectors

    Full text link
    P-type point contact (PPC) germanium detectors are used in rare event and low-background searches, including neutrinoless double beta (0vbb) decay, low-energy nuclear recoils, and coherent elastic neutrino-nucleus scattering. The detectors feature an excellent energy resolution, low detection thresholds down to the sub-keV range, and enhanced background rejection capabilities. However, due to their large passivated surface, separating the signal readout contact from the bias voltage electrode, PPC detectors are susceptible to surface effects such as charge build-up. A profound understanding of their response to surface events is essential. In this work, the response of a PPC detector to alpha and beta particles hitting the passivated surface was investigated in a multi-purpose scanning test stand. It is shown that the passivated surface can accumulate charges resulting in a radial-dependent degradation of the observed event energy. In addition, it is demonstrated that the pulse shapes of surface alpha events show characteristic features which can be used to discriminate against these events

    Factorizable ribbon quantum groups in logarithmic conformal field theories

    Full text link
    We review the properties of quantum groups occurring as Kazhdan--Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    Flat Low-Loss Silicon Gradient Index Lens for Millimeter and Submillimeter Wavelengths

    Get PDF
    We present the design, simulation, and planned fabrication process of a flat high resistivity silicon gradient index (GRIN) lens for millimeter and submillimeter wavelengths with very low absorption losses. The gradient index is created by sub wavelength holes whose size increases with the radius of the lens. The effective refractive index created by the subwavelength holes is constant over a very wide bandwidth, allowing the fabrication of achromatic lenses up to submillimeter wavelengths. The designed GRIN lens was successfully simulated and shows an expected efficiency better than that of a classic silicon plano-concave spherical lens with approximately the same thickness and focal length. Deep reactive ion etching (DRIE) and wafer-bonding of several patterned wafers will be used to realize our first GRIN lens prototype

    Coexistence of 'alpha+ 208Pb' cluster structures and single-particle excitations in 212Po

    Full text link
    Excited states in 212Po have been populated by alpha transfer using the 208Pb(18O,14C) reaction at 85MeV beam energy and studied with the EUROBALL IV gamma multidetector array. The level scheme has been extended up to ~ 3.2 MeV excitation energy from the triple gamma coincidence data. Spin and parity values of most of the observed states have been assigned from the gamma angular distributions and gamma -gamma angular correlations. Several gamma lines with E(gamma) < 1 MeV have been found to be shifted by the Doppler effect, allowing for the measurements of the associated lifetimes by the DSAM method. The values, found in the range [0.1-0.6] ps, lead to very enhanced E1 transitions. All the emitting states, which have non-natural parity values, are discussed in terms of alpha-208Pb structure. They are in the same excitation-energy range as the states issued from shell-model configurations.Comment: 21 pages, 19 figures, corrected typos, revised arguments in Sect. III
    • …
    corecore