2,459 research outputs found

    Young peoples’ lived experiences of shifts between face-to-face and smartphone interactions: An interpretative phenomenological analysis

    Get PDF
    Users of smartphones are finding new ways to shift between the online and the physical world, due to increases in the number of people who go online while ‘out and about’. This study focuses on youths’ lived experiences of using and managing their smartphones and how they navigate their shifts between face to face and digital interactions. Semi-structured interviews with seven smartphone users were analysed using Interpretative Phenomenological Analysis. The overarching theme was how participants establish and experience presence through their shifts between face to face and digital interactions. Three themes were developed; constant availability vs be present with me; projection and protection of self; dystopian world: disconnection and separation. The study’s findings highlight that to be ‘present’ while physically with others is socially desirable. Participants depicted a dystopian world when others fail to manage their phone use. The study also highlights the complex identity work that participants engaged in as they navigate social norms around presence

    A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    Get PDF
    There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined

    Optimal discrimination of quantum operations

    Full text link
    We address the problem of discriminating with minimal error probability two given quantum operations. We show that the use of entangled input states generally improves the discrimination. For Pauli channels we provide a complete comparison of the optimal strategies where either entangled or unentangled input states are used.Comment: 4 pages, no figure

    Applications of active microwave imagery

    Get PDF
    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft

    Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

    Full text link
    In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is O(n^mlogn^)O(\sqrt{\hat{n}m}\log \hat{n}), and the running time of the best known deterministic algorithm is O(n+m)O(n+m), where nn is the number of vertices, n^\hat{n} is the number of vertices with at least one outgoing edge; mm is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.Comment: UCNC2019 Conference pape

    Dynamics of entropy and nonclassical properties of the state of a Λ\Lambda-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    Full text link
    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ` `intensity-dependent coupling"" in a ` `Kerr medium"". The three-level atom is considered to be in a Λ\Lambda-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for arbitrary nonlinearity function f(n)f(n) associated to any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of VV-type three-level atoms.Comment: 18 pages, 7 Figure

    Quantum walks on quotient graphs

    Get PDF
    A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup used to construct it. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A {\bf 74}, 042334 (2006)] that the hitting time can be infinite. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with fast hitting times correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speed-up.Comment: 18 pages, 7 figures in EPS forma

    An App to Help Young People Self-Manage When Feeling Overwhelmed (ReZone): Protocol of a Cluster Randomized Controlled Trial

    Get PDF
    Background: The association between behavioral difficulties and academic attainment is well established. Recent policy advising schools on managing behavior has promoted the early identification of behavioral difficulties. There is also increasing research into mHealth interventions to provide support for emotional and behavioral difficulties for young people. Objective: The primary aim of the proposed research is to examine the effectiveness of an mHealth intervention, ReZone, in reducing emotional and behavioral difficulties in young people. Methods: The protocol is a cluster trial of 12 classes with N=120 students with classes randomized to ReZone or management as usual. Multilevel modeling will be used to compare ReZone versus management as usual accounting for classroom-level variation. Results: Baseline data collection started in February 2017 and ended in April 2017. Follow-up data collection started in April 2017 and ended in June 2017. Conclusions: The proposed research will provide evidence as to whether ReZone is effective at helping young people to self-manage when feeling overwhelmed

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within ϵ\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(δ1(logN+logϵ1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where δ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=eiPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϵ1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ1/2logNlogϵ1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac

    Statistical distinguishability between unitary operations

    Get PDF
    The problem of distinguishing two unitary transformations, or quantum gates, is analyzed and a function reflecting their statistical distinguishability is found. Given two unitary operations, U1U_1 and U2U_2, it is proved that there always exists a finite number NN such that U1NU_1^{\otimes N} and U2NU_2^{\otimes N} are perfectly distinguishable, although they were not in the single-copy case. This result can be extended to any finite set of unitary transformations. Finally, a fidelity for one-qubit gates, which satisfies many useful properties from the point of view of quantum information theory, is presented.Comment: 6 pages, REVTEX. The perfect distinguishability result is extended to any finite set of gate
    corecore