663 research outputs found

    Consistent low-energy reduction of the three-band model for copper oxides with O-O hopping to the effective t-J model

    Full text link
    A full three-band model for the CuO2_{2} plane with inclusion of all essential interactions - Cu-O and O-O hopping, repulsion at the copper and oxygen and between them - is considered. A general procedure of the low-energy reduction of the primary Hamiltonian to the Hamiltonian of the generalized tt-t′t'-JJ model is developed. An important role of the direct O-O hopping is discussed. Parameters of the effective low-energy model (the hopping integral, the band position and the superexchange constant JJ are calculated. An analysis of the obtained data shows that the experimental value of JJ fixes the charge transfer energy Δ=(ϵp−ϵd)\Delta =(\epsilon_{p}-\epsilon_{d}) in a narrow region of energies.Comment: 32 pp. (LATEX), two figures (PostScript) appende

    Spectral function of the 1D Hubbard model in the U→+∞U\to +\infty limit

    Full text link
    We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at the Fermi energy like ∣ω−εF∣−3/8|\omega-\varepsilon_F|^{-3/8} in the U→+∞U\to +\infty limit. The Luttinger liquid behaviour ∣ω−εF∣α|\omega-\varepsilon_F|^\alpha, where α→1/8\alpha \to 1/8 as U→+∞U\to +\infty , should be limited to ∣ω−εF∣∼t2/U|\omega-\varepsilon_F| \sim t^2/U (for UU large but finite), which shrinks to a single point, ω=εF\omega=\varepsilon_F,in that limit. The consequences for the observation of the Luttinger liquid behaviour in photoemission and inverse photoemission experiments are discussed.Comment: 4 pages, RevTeX, 2 figures on reques

    Dynamical density-density correlations in one-dimensional Mott insulators

    Full text link
    The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hubbard model extended with nearest neighbor repulsion using the Lanczos algorithm for finite size systems and analytically for large on site repulsion compared to hopping amplitudes. At the zone boundary an excitonic feature exists for any finite nearest neighbor repulsion and exhausts most of the spectral weight, even for parameters where no exciton is visible at zero momentum.Comment: 5 pages, REVTeX, epsf, 3 postscript figure

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989

    The dimerized phase of ionic Hubbard models

    Full text link
    We derive an effective Hamiltonian for the ionic Hubbard model at half filling, extended to include nearest-neighbor repulsion. Using a spin-particle transformation, the effective model is mapped onto simple spin-1 models in two particular cases. Using another spin-particle transformation, a slightly modified model is mapped into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known to be spontaneously dimerized. From the effective models several properties of the dimerized phase are discussed, like ferroelectricity and fractional charge excitations. Using bosonization and recent developments in the theory of macroscopic polarization, we show that the polarization is proportional to the charge of the elementary excitations

    Genetic diversity in cocoa germplasm of southern Cameroon revealed by simple sequences repeat (SSRS) markers

    Get PDF
    The range of polymorphism of about 194 cocoa accessions collected in farms in Southern Cameroon during field surveys and 71 Trinitario and Upper Amazon clones available in genebanks on-station wasassessed using 13 SSR markers. The gene diversity, genetic differentiation and genetic similarities were analysed for the different populations. In total, 282 alleles were detected within all the populations studied. The farm accessions were strongly differentiated based on their geographical origin, with accessions coming from the East province clustering together with local Trinitario accessions from the genebank. Accessions from the Centre-South provinces clustered with Amazon and hybrid accessions, suggesting more uptake of seed garden materials in farms in these provinces. The genetic diversity parameters indicate that the farmers’ planting material is not highly diverse, and is genetically close to parental genotypes available in genebanks. However, some promising Upper Amazon clones (T-clones) that have also been used as parents of released hybrid varieties were genetically distant from the accessions. This result suggests that the progenies of these parents have so far been poorly used in the cocoa farms surveyed. The consequences of these findings for cocoa breeding in Cameroon are discusse

    Magnetic properties of NaV2O5, a one-dimensional spin 1/2 antiferromagnet with finite chains

    Full text link
    We have performed measurements of the magnetic susceptibility of NaV2_2O5_5 between 2 and 400 K. The high temperature part is typical of spin 1/2 chains with a nearest--neighbour antiferromagnetic exchange integral JJ of 529 K. We develop a model for the susceptibility of a system with finite chains to account for the low temperature part of the data, which cannot be fitted by a standard Curie-Weiss term. These results suggest that the next nearest--neighbour exchange integral J2J_2 in CaV4_4O9_9 should be of the order of 500 K because, like JJ in NaV2_2O5_5, it corresponds to corner sharing VO5_5 square pyramids.Comment: An early version of the manuscript was mistakenly submitted. Although relatively minor, the changes concern the list of authors, the main text, the references and the figure captions. 10 pages of latex, 2 figure

    Range of the t--J model parameters for CuO2_{2} plane: experimental data constraints

    Full text link
    The t-J model effective hopping integral is determined from the three-band Hubbard model for the charge carriers in CuO2_{2} plane. For this purpose the values of the superexchange constant JJ and the charge-transfer gap EgapE_{gap} are calculated in the framework of the three-band model. Fitting values of JJ and EgapE_{gap} to the experimental data allows to narrow the uncertainty region of the three-band model parameters. As a result, the t/Jt/J ratio of the t-J model is fixed in the range 2.4÷2.72.4 \div 2.7 for holes and 2.5÷3.02.5 \div 3.0 for electrons. Formation of the Frenkel exciton is justified and the main features of the charge-transfer spectrum are correctly described in the framework of this approach.Comment: 20pp., REVTEX 3.0, (11 figures), report 66

    Theory of the optical conductivity of (TMTSF)2_2PF6_6 in the mid-infrared range

    Full text link
    We propose an explanation of the mid-infrared peak observed in the optical conductivity of the Bechgaard salt (TMTSF)2_2PF6_6 in terms of electronic excitations. It is based on a numerical calculation of the conductivity of the quarter-filled, dimerized Hubbard model. The main result is that, even for intermediate values of U/tU/t for which the charge gap is known to be very small, the first peak, and at the same time the main structure, of the optical conductivity is at an energy of the order of the dimerization gap, like in the infinite UU case. This surprising effect is a consequence of the optical selection rules.Comment: 10 pages, 9 uuencoded figure
    • …
    corecore