8 research outputs found

    Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal

    Get PDF
    Due to its harmful impact on human health, the presence of heavy metals, metalloids and other toxic pollutants in drinking or irrigation water is a major concern. Recent studies have proved that nanosized adsorbents are significantly more effective than their microsized counterparts. Particular attention has been given to nanocomposites with nanoadsorbents embedded in matrixes that could provide stability to the material and contribute to eliminating problems that may appear when using conventional granular systems. This study presents the preparation of a novel hybrid filter from a commercially available polypropylene (PP) non-woven fabric matrix modified with multiwall carbon nanotubes (MWCNT) and iron oxy(hydroxide) nanoparticles, and its use in the removal of As(III). A Box–Behnken statistical experimental design has been chosen to explore relevant variables affecting the filter performance: (1) As(III) concentration, (2) pH and (3) sorbent dose. From an As(III) concentration of 10 mg L−1, at pH 6.5 and with a sorbent dose of 5 g L−1, the PP filter modified with MWCNT removes 10% of the initial metalloid concentration, reaching a capacity of 0.27 mg g−1. After modification with iron oxy(hydroxide), the performance of the material is largely enhanced. The filter, under the same conditions, removes 90% of the initial As(III) concentration, reaching a capacity almost tenfold higher (2.54 mg g−1). This work demonstrates that the developed hybrid filter is effective toward the removal of As(III) in a wide range of pHs. A cubic regression model to compute the removal of the filter as a function of pH and sorbent dose is provided.acceptedVersio

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Effects of submarine mine tailings on macrobenthic community structure and ecosystem processes

    Get PDF
    Embargo until 22 February 2020.A mesocosm experiment with intact benthic communities was conducted to evaluate the effects of mine tailings on benthic community structure and biogeochemical processes. Two types of tailings were supplied from process plants using flotation and flocculation chemicals, while a third type was absent of added chemicals. All tailings impacted the sediment community at thin layers, and through more mechanisms than merely hypersedimentation. In general, the strongest impact was observed in a very fine-grained tailings containing flotation chemicals. The second strongest occurred in tailings with no process chemicals. The tailings with flocculation chemicals initiated the weakest response. Fluxes of oxygen, nitrate and ammonium provided some indications on biodegradation of organic phases. Release of phosphate and silicate decreased with increasing layer thickness of all three tailings. A threshold level of 2 cm was identified both for faunal responses and for fluxes of phosphate and silicate. The particular impact mechanisms should receive more attention in future studies in order to minimize the environmental risk associated with tailings disposal.acceptedVersio

    Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal

    Get PDF
    Due to its harmful impact on human health, the presence of heavy metals, metalloids and other toxic pollutants in drinking or irrigation water is a major concern. Recent studies have proved that nanosized adsorbents are significantly more effective than their microsized counterparts. Particular attention has been given to nanocomposites with nanoadsorbents embedded in matrixes that could provide stability to the material and contribute to eliminating problems that may appear when using conventional granular systems. This study presents the preparation of a novel hybrid filter from a commercially available polypropylene (PP) non-woven fabric matrix modified with multiwall carbon nanotubes (MWCNT) and iron oxy(hydroxide) nanoparticles, and its use in the removal of As(III). A Box–Behnken statistical experimental design has been chosen to explore relevant variables affecting the filter performance: (1) As(III) concentration, (2) pH and (3) sorbent dose. From an As(III) concentration of 10 mg L−1, at pH 6.5 and with a sorbent dose of 5 g L−1, the PP filter modified with MWCNT removes 10% of the initial metalloid concentration, reaching a capacity of 0.27 mg g−1. After modification with iron oxy(hydroxide), the performance of the material is largely enhanced. The filter, under the same conditions, removes 90% of the initial As(III) concentration, reaching a capacity almost tenfold higher (2.54 mg g−1). This work demonstrates that the developed hybrid filter is effective toward the removal of As(III) in a wide range of pHs. A cubic regression model to compute the removal of the filter as a function of pH and sorbent dose is provided

    High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review

    No full text
    corecore