40 research outputs found

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these “triple crises” are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Depauperate Avifauna in Plantations Compared to Forests and Exurban Areas

    Get PDF
    Native forests are shrinking worldwide, causing a loss of biological diversity. Our ability to prioritize forest conservation actions is hampered by a lack of information about the relative impacts of different types of forest loss on biodiversity. In particular, we lack rigorous comparisons of the effects of clearing forests for tree plantations and for human settlements, two leading causes of deforestation worldwide. We compared avian diversity in forests, plantations and exurban areas on the Cumberland Plateau, USA, an area of global importance for biodiversity. By combining field surveys with digital habitat databases, and then analyzing diversity at multiple scales, we found that plantations had lower diversity and fewer conservation priority species than did other habitats. Exurban areas had higher diversity than did native forests, but native forests outscored exurban areas for some measures of conservation priority. Overall therefore, pine plantations had impoverished avian communities relative to both native forests and to exurban areas. Thus, reports on the status of forests give misleading signals about biological diversity when they include plantations in their estimates of forest cover but exclude forested areas in which humans live. Likewise, forest conservation programs should downgrade incentives for plantations and should include settled areas within their purview
    corecore