45 research outputs found

    The asymmetric Exclusion Process and Brownian Excursions

    Full text link
    We consider the totally asymmetric exclusion process (TASEP) in one dimension in its maximal current phase. We show, by an exact calculation, that the non-Gaussian part of the fluctuations of density can be described in terms of the statistical properties of a Brownian excursion. Numerical simulations indicate that the description in terms of a Brownian excursion remains valid for more general one dimensional driven systems in their maximal current phase.Comment: 23 pages, 1 figure, in latex, e-mail addresses: [email protected], [email protected], [email protected]

    Large deviation functional of the weakly asymmetric exclusion process

    Get PDF
    We obtain the large deviation functional of a density profile for the asymmetric exclusion process of L sites with open boundary conditions when the asymmetry scales like 1/L. We recover as limiting cases the expressions derived recently for the symmetric (SSEP) and the asymmetric (ASEP) cases. In the ASEP limit, the non linear differential equation one needs to solve can be analysed by a method which resembles the WKB method

    Fluctuations in the weakly asymmetric exclusion process with open boundary conditions

    Get PDF
    accepted in Journal of Statistical PhysicsWe investigate the fluctuations around the average density profile in the weakly asymmetric exclusion process with open boundaries in the steady state. We show that these fluctuations are given, in the macroscopic limit, by a centered Gaussian field and we compute explicitly its covariance function. We use two approaches. The first method is dynamical and based on fluctuations around the hydrodynamic limit. We prove that the density fluctuations evolve macroscopically according to an autonomous stochastic equation, and we search for the stationary distribution of this evolution. The second approach, which is based on a representation of the steady state as a sum over paths, allows one to write the density fluctuations in the steady state as a sum over two independent processes, one of which is the derivative of a Brownian motion, the other one being related to a random path in a potential

    Sample-Dependent Phase Transitions in Disordered Exclusion Models

    Get PDF
    We give numerical evidence that the location of the first order phase transition between the low and the high density phases of the one dimensional asymmetric simple exclusion process with open boundaries becomes sample dependent when quenched disorder is introduced for the hopping rates.Comment: accepted in Europhysics Letter

    Single-Bottleneck Approximation for Driven Lattice Gases with Disorder and Open Boundary Conditions

    Full text link
    We investigate the effects of disorder on driven lattice gases with open boundaries using the totally asymmetric simple exclusion process as a paradigmatic example. Disorder is realized by randomly distributed defect sites with reduced hopping rate. In contrast to equilibrium, even macroscopic quantities in disordered non-equilibrium systems depend sensitively on the defect sample. We study the current as function of the entry and exit rates and the realization of disorder and find that it is, in leading order, determined by the longest stretch of consecutive defect sites (single-bottleneck approximation, SBA). Using results from extreme value statistics the SBA allows to study ensembles with fixed defect density which gives accurate results, e.g. for the expectation value of the current. Corrections to SBA come from effective interactions of bottlenecks close to the longest one. Defects close to the boundaries can be described by effective boundary rates and lead to shifts of the phase transitions. Finally it is shown that the SBA also works for more complex models. As an example we discuss a model with internal states that has been proposed to describe transport of the kinesin KIF1A.Comment: submitted to J. Stat. Mec

    Nonequilibrium stationary states and equilibrium models with long range interactions

    Full text link
    It was recently suggested by Blythe and Evans that a properly defined steady state normalisation factor can be seen as a partition function of a fictitious statistical ensemble in which the transition rates of the stochastic process play the role of fugacities. In analogy with the Lee-Yang description of phase transition of equilibrium systems, they studied the zeroes in the complex plane of the normalisation factor in order to find phase transitions in nonequilibrium steady states. We show that like for equilibrium systems, the ``densities'' associated to the rates are non-decreasing functions of the rates and therefore one can obtain the location and nature of phase transitions directly from the analytical properties of the ``densities''. We illustrate this phenomenon for the asymmetric exclusion process. We actually show that its normalisation factor coincides with an equilibrium partition function of a walk model in which the ``densities'' have a simple physical interpretation.Comment: LaTeX, 23 pages, 3 EPS figure

    Strong asymmetric limit of the quasi-potential of the boundary driven weakly asymmetric exclusion process

    Full text link
    We consider the weakly asymmetric exclusion process on a bounded interval with particles reservoirs at the endpoints. The hydrodynamic limit for the empirical density, obtained in the diffusive scaling, is given by the viscous Burgers equation with Dirichlet boundary conditions. In the case in which the bulk asymmetry is in the same direction as the drift due to the boundary reservoirs, we prove that the quasi-potential can be expressed in terms of the solution to a one-dimensional boundary value problem which has been introduced by Enaud and Derrida \cite{de}. We consider the strong asymmetric limit of the quasi-potential and recover the functional derived by Derrida, Lebowitz, and Speer \cite{DLS3} for the asymmetric exclusion process

    Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide

    Full text link
    We consider the general problem of determining the steady state of stochastic nonequilibrium systems such as those that have been used to model (among other things) biological transport and traffic flow. We begin with a broad overview of this class of driven diffusive systems - which includes exclusion processes - focusing on interesting physical properties, such as shocks and phase transitions. We then turn our attention specifically to those models for which the exact distribution of microstates in the steady state can be expressed in a matrix product form. In addition to a gentle introduction to this matrix product approach, how it works and how it relates to similar constructions that arise in other physical contexts, we present a unified, pedagogical account of the various means by which the statistical mechanical calculations of macroscopic physical quantities are actually performed. We also review a number of more advanced topics, including nonequilibrium free energy functionals, the classification of exclusion processes involving multiple particle species, existence proofs of a matrix product state for a given model and more complicated variants of the matrix product state that allow various types of parallel dynamics to be handled. We conclude with a brief discussion of open problems for future research.Comment: 127 pages, 31 figures, invited topical review for J. Phys. A (uses IOP class file
    corecore