18 research outputs found

    A laboratory investigation into the aggregation efficiency of small ice crystals

    Get PDF
    The aggregation of ice crystals and its temperature dependence is studied in the laboratory using a large ice cloud chamber. This process is important to the evolution of ice clouds in earth's atmosphere, yet there have been relatively few laboratory studies quantifying this parameter and its dependence on temperature. A detailed microphysical model is used to interpret the results from the experiments and derive best estimates for the aggregation efficiency as well as error bars. Our best estimates for the aggregation efficiency, at temperatures other than −15 °C, (in the interval −30≤<i>T</i>≤5 °C) are mostly in agreement with previous findings, which were derived using a very different approach to that described here. While the errors associated with such experiments are reasonably large, statistically, at temperatures other than −15, we are able to rule out aggregation efficiencies larger than 0.5 at the 75th percentile and rule out non-zero values at −15 °C, whereas at −15 °C we can rule out values higher than 0.85 and values lower than 0.35. The values of the aggregation efficiency shown here may be used in model studies of aggregation, but care must be taken that they only apply for the initial stages of aggregate growth, with humidities at or close to water saturation, and for particles up to a maximum size of ~500 μm. They may therefore find useful application for modelling supercooled mid-level layer clouds that contain ice crystals, which are known to be important radiatively

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    The breakup of levitating water drops observed with a high speed camera

    Get PDF
    Collision-induced water drop breakup in a vertical wind tunnel was observed using a high speed camera for interactions between larger drop sizes (up to 7 mm diameter) than have previously been experimentally observed. Three distinct collisional breakup types were observed and the drop size distributions from each were analysed for comparison with predictions of fragment distributions from larger drops by two sets of established breakup parameterisations. The observations showed some similarities with both parameterisations but also some marked differences for the breakup types that could be compared, particularly for fragments 1 mm and smaller. Modifications to the parameterisations are suggested and examined. Presented is also currently the largest dataset of bag breakup distributions observed. Differences between this and other experimental research studies and modelling parameterisations, and the associated implications for interpreting results are discussed. Additionally, the stochastic coalescence and breakup equation was solved computationally using a breakup parameterisation, and the evolving drop-size distribution for a range of initial conditions was examined. Initial cloud liquid water content was found to have the greatest influence on the resulting distribution, whereas initial drop number was found to have relatively little influence. This may have implications when considering the effect of aerosol on cloud evolution, raindrop formation and resulting drop size distributions. Calculations presented show that, using an ideal initial cloud drop-size distribution, ~1–3% of the total fragments are contributed from collisional breakup between drops of 4 and 6 mm
    corecore