715 research outputs found

    Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Get PDF
    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of ∌0.02 and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from COSMOS 30-band photometry and find that our two very different methods produce consistent constraints

    Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing

    Get PDF
    We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg^2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while “blind” to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457×457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S_8 ≡ σ_8(Ω_m/0.3)^(0.5) = 0.773^(+0.026)_(−0.020) and Ω_m = 0.267^(+0.030)_(−0.017) for ΛCDM; for wCDM, we find S_8 = 0.782^(+0.036)_(−0.024), Ω_m = 0.284^(+0.033)_(−0.030), and w = −0.82^(+0.21)_(−0.20) at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S_8 and Ω_m are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S_8 = 0.802±0.012 and Ω_m=0.298±0.007 in ΛCDM and w = −1.00^(+0.05)_(−0.04) in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity

    The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Get PDF
    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The clustercentric radius at which this process occurs, r_(sp), defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_(sp). We measure the galaxy number density and weak lensing mass profiles around REDMAPPER galaxy clusters in the first-year Dark Energy Survey (DES) data. For a cluster sample with mean M_(200m) mass ≈2.5 × 10^(14) M⊙, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_(sp) = 1.13 ± 0.07 h^(−1) Mpc, consistent with the earlier Sloan Digital Sky Survey measurements of More et al. and Baxter et al. Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_(sp) = 1.34 ± 0.21 h^(−1) Mpc from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that, consistent with ΛCDM simulations, r_(sp) scales with R_(200m) and does not evolve with redshift over the redshift range of 0.3–0.6. We also find that potential systematic effects associated with the REDMAPPER algorithm may impact the location of r_(sp). We discuss the progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples

    Manufacturing of new roughness standards for the linearity of the vertical axis – Feasibility study and optimization

    Get PDF
    AbstractIn order to provide an alternative for the vertical axis calibration of stylus instruments which is usually performed based on step height standards, a new measurement standard geometry for the calibration of the linearity and research on its manufacturing is needed. For the manufacturing of these geometric measurement standards there is, according to the type of the measurement standard, a broad range of manufacturing processes that can be applied. New measurement standards for the roughness calibration were developed at the University of Kaiserslautern and an ultra-precision turning process was chosen for its manufacturing. The paper presents a feasibility study of the chosen manufacturing process. The aim of the investigations is to present the development of the standard and the qualification of the ultra-precision turning process for the manufacturing of calibration standards. An examination was performed in order to characterize the influences of different process parameters on the quality of the manufactured roughness standard

    Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Get PDF
    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of ∌0.02 and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from COSMOS 30-band photometry and find that our two very different methods produce consistent constraints

    Cosmic shear analysis of archival HST/ACS data: I. Comparison of early ACS pure parallel data to the HST/GEMS Survey

    Get PDF
    This is the first paper of a series describing our measurement of weak lensing by large-scale structure using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). We describe our new correction scheme for the time-dependent ACS PSF based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to < 2*10^{-6} for galaxy fields containing at least 10 stars. We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin^{-2} with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation sigma_{8,CDFS}=0.52^{+0.11}_{-0.15} (stat) +/- 0.07 (sys) (68% confidence assuming Gaussian cosmic variance) at fixed Omega_m=0.3 for a LambdaCDM cosmology. We interpret this exceptionally low estimate to be due to a local under-density of the foreground structures in the CDFS.Comment: Version accepted for publication in Astronomy & Astrophysics with 28 pages, 25 figures. A version with full resolution figures can be downloaded from http://www.astro.uni-bonn.de/~schrabba/papers/cosmic_shear_acs1_v2.pd

    Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing

    Get PDF
    We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg^2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while “blind” to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457×457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S_8 ≡ σ_8(Ω_m/0.3)^(0.5) = 0.773^(+0.026)_(−0.020) and Ω_m = 0.267^(+0.030)_(−0.017) for ΛCDM; for wCDM, we find S_8 = 0.782^(+0.036)_(−0.024), Ω_m = 0.284^(+0.033)_(−0.030), and w = −0.82^(+0.21)_(−0.20) at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S_8 and Ω_m are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S_8 = 0.802±0.012 and Ω_m=0.298±0.007 in ΛCDM and w = −1.00^(+0.05)_(−0.04) in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity

    Kinematic simulation to investigate the influence of the cutting edge topography when ball end micro milling

    Get PDF
    During the ball end micro milling of material measures, the cutting edge topography is imaged on the machined workpiece. The influence of the chipping on the resulting surface quality is much more dominant than other kinematic effects. In this simulative study, a model is built that is able to predict the correlation between the cutting edge topography and the resulting workpiece topography. Thus, the mentioned correlation can be investigated without overlaying effects of material separation or measurement uncertainties, which are unavoidable in an experimental study. The model has been validated based on four artificial chippings
    • 

    corecore