47 research outputs found

    Beyond the simple Proximity Force Approximation: geometrical effects on the non-retarded Casimir interaction

    Full text link
    We study the geometrical corrections to the simple Proximity Force Approximation for the non-retarded Casimir force. We present analytical results for the force between objects of various shapes and substrates, and between pairs of objects. We compare the results to those from more exact numerical calculations. We treat spheres, spheroids, cylinders, cubes, cones, and wings; the analytical PFA results together with the geometrical correction factors are summarized in a table.Comment: 18 pages, 19 figures, 1 tabl

    The role of geometry on dispersive forces

    Full text link
    The role of geometry on dispersive forces is investigated by calculating the energy between different spheroidal particles and planar surfaces, both with arbitrary dielectric properties. The energy is obtained in the non-retarded limit using a spectral representation formalism and calculating the interaction between the surface plasmons of the two macroscopic bodies. The energy is a power-law function of the separation of the bodies, where the exponent value depends on the geometrical parameters of the system, like the separation distance between bodies, and the aspect ratio among minor and major axes of the spheroid.Comment: Presneted at QFEXT05, Barcelona 2005. Submitted to J. Phys.

    Numerical study of the effect of structure and geometry on van der Waals forces

    Full text link
    We use multipolar expansions to find the force on a gold coated sphere above a gold substrate; we study both an empty gold shell and a gold coated polystyrene sphere. We find four characteristic separation ranges. In the first region, which for the empty gold shell occurs for distances, d, smaller than the thickness of the coating, the result agrees with that on a solid gold sphere and varies as d^(-2); for larger separations there is a region where the force behaves as if the coating is strictly two dimensional and varies as d^(-5/2); in the third region the dependence is more unspecific; in the forth region when d is larger than the radius, the force varies as d^(-4). For homogeneous objects of more general shapes we introduce a numerical method based on the solution of an integral equation for the electric field over a system of objects with arbitrary shapes. We study the effect of shape and orientation on the van der Waals interaction between an object and a substrate and between two objects.Comment: 8 pages, presented in the QFEXT07 conference, submitted to Journal of Physics

    High-multipolar effects on the Casimir force: the non-retarded limit

    Full text link
    We calculate exactly the Casimir force or dispersive force, in the non-retarded limit, between a spherical nanoparticle and a substrate beyond the London's or dipolar approximation. We find that the force is a non-monotonic function of the distance between the sphere and the substrate, such that, it is enhanced by several orders of magnitude as the sphere approaches the substrate. Our results do not agree with previous predictions like the Proximity theorem approach.Comment: 7 pages including 2 figures. Submitted to Europjysics Letter

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let

    Dispersive force between dissimilar materials: geometrical effects

    Full text link
    We calculate the Casimir force or dispersive van der Waals force between a spherical nanoparticle and a planar substrate, both with arbitrary dielectric properties. We show that the force between a sphere and a plane can be calculated through the interacting surface plasmons of the bodies. Using a Spectral Representation formalism, we show that the force of a sphere made of a material A and a plane made of a material B, differ from the case when the sphere is made of B, and the plane is made of A. We found that the difference depends on the plasma frequency of the materials, the geometry, and the distance of separation between sphere and plane. The differences show the importance of the geometry, and make evident the necessity of realistic descriptions of the sphere-plane system beyond the Derjaguin Approximation or Proximity Theorem Approximation

    Controlled Anisotropic Deformation of Ag Nanoparticles by Si Ion Irradiation

    Full text link
    The shape and alignment of silver nanoparticles embedded in a glass matrix is controlled using silicon ion irradiation. Symmetric silver nanoparticles are transformed into anisotropic particles whose larger axis is along the ion beam. Upon irradiation, the surface plasmon resonance of symmetric particles splits into two resonances whose separation depends on the fluence of the ion irradiation. Simulations of the optical absorbance show that the anisotropy is caused by the deformation and alignment of the nanoparticles, and that both properties are controlled with the irradiation fluence.Comment: Submitted to Phys. Rev. Lett. (October 14, 2005

    Plasmonic nature of van der Waals forces between nanoparticles

    Full text link
    We propose a new approach to calculate van der Waals forces between nanoparticles where the van der Waals energy can be reduced to the energy of elementary surface plasmon oscillations in nanoparticles. The general theory is applied to describe the interaction between 2 metallic nanoparticles and between a nanoparticle and a perfectly conducting plane. Our results could be used to prove experimentally the existence of plasmonic molecules and to elaborate new control mechanisms for the adherence of nanoparticles between each other or onto surfaces.Comment: 4 pages 5 figure
    corecore