42,286 research outputs found

    Gust alleviation system to improve ride comfort of light airplanes

    Get PDF
    System consists of movable auxiliary aerodynamic sensors mounted on fuselage and connected to trailing-edge flaps by rigid mechanical linkages. System achieves alleviation by reducing lift-curve slope of airplane to such a small value that gust-induced angles of attack will result in small changes in lift

    Analysis of Performance Indices for Simulated Skeleton Descents

    Get PDF
    In the winter Olympic sport of Skeleton, sliders sprint and load themselves onto the sled facing head forwards. The slider uses primarily their shoulders and torso to apply control to the direction of the sled as it progressively gains speed during its descent. These small control course keeping maneuvers alongside more severe use of toe tapping onto the ice will help determine the eventual trajectory of the sled. It is therefore of interest to consider for a possible trajectory what control actions will determine the fastest descent time and in particular what metrics should be examined. In this paper a three degree-of-freedom simulation has been developed to analyse the influence of different control strategies on the descent time of a bob-skeleton. A proportional-derivative (PD) controller is used to steer the simulation down a representation of the Igls ice-track. Parametric variations of the simulation's performance were analysed and compared to identify possible correlations for controllers assist the design of an optimal controller. Analysis of the results have identified positive correlations between descent time, transverse distance travelled and energy dissipation establishing that the fastest descent time is achieved by minimising the energy lost through the descent

    Surface figure measurements of radio telescopes with a shearing interferometer

    Get PDF
    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope’s focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 µm, or λ/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 µm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation

    Impacts of farming practice within organic farming systems on below-ground ecology and ecosystem function

    Get PDF
    Maintaining ecosystem function is a key issue for sustainable farming systems which contribute broadly to global ecosystem health. A focus simply on the diversity of belowground organisms is not sufficient and there is a need to consider the contribution of below-ground biological processes to the maintenance and enhancement of soil function and ecosystem services. A critical literature review on the impacts of land management practices on below-ground ecology and function shows that farm management practices can have a major impact. A particular challenge for organic farming systems is to explore to what extent reduced tillage can be adopted to the benefit of below-ground ecology without critically upsetting the whole farm management balance

    Pneumatic separator gives quick release to heavy loads

    Get PDF
    Pneumatic separator, using applied pressure, quickly releases restraining devices securing heavy loads. With minor modifications this separator can be used as a coupling device

    On the Interpretation of the broad-band millimeter-wave flux from Orion

    Get PDF
    Spectral observations of the core of Orion A at wavelengths around 1.3 mm show a high density of strong, broad emission lines. The combined flux in lines with peak antenna temperatures stronger than 0.2 K accounts for approximately 40 percent of the broad-band millimeter-wave flux from the region. Thus the broad-band flux from Orion A is in large part due to sources other than dust emission

    Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation

    Get PDF
    We present here an investigation of the chemical composition of the various regions in the core of the Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the 1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry. A global analysis of the observed abundances shows that the markedly different chemical compositions of the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving, initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact

    The rotational emission-line spectrum of Orion A between 247 and 263 GHz

    Get PDF
    Results are presented from a molecular line survey of the core of the Orion molecular cloud between 247 and 263 GHz. The spectrum contains a total of 243 resolvable lines from 23 different chemical species. When combined with the earlier survey of Orion from 215 to 247 GHz by Sutton et al. (1985), the complete data set includes over 780 emission features from 29 distinct molecules. Of the 23 molecules detected in this survey, only NO, CCH, and HCO^+ were not identified in the lower frequency data. As a result of the supporting laboratory spectroscopy performed to supplement existing millimeter-wave spectral line catalogs, only 33 of the more than 780 lines remain unidentified, of which 16 occur in the upper frequency band. A significant chance remains that a number of these unidentified lines are due to transitions between states of either isotopically substituted or highly excited abundant and complex molecules such as CH_3OH, CH_3OCH_3, and HCOOCH_3, whose rotational spectra are poorly known at present. The very small percentage and weak strength of the unidentified lines implies that the dominant chemical constituents visible at millimeter wavelengths have been identified in the Orion molecular cloud

    Determination of wind tunnel constraint effects by a unified pressure signature method. Part 1: Applications to winged configurations

    Get PDF
    A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases

    Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow

    Get PDF
    The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant
    corecore